o
    h                     @   s   d Z ddlZddlZddlmZ dd ZG dd deeZG d	d
 d
e	e
Zdd Zdd Zd%ddZd&ddZdd Zdd Zdd ZddddZdd Zdd  Zd'd!d"Zd#d$ ZdS )(zLAssorted utilities, which do not need anything other then torch and stdlib.
    N   )_dtypes_implc                 C   s2   t | trdS zt|  W dS  ty   Y dS w )NFT)
isinstancestrlen	Exception)seq r	   H/var/www/html/ai/venv/lib/python3.10/site-packages/torch/_numpy/_util.pyis_sequence   s   

r   c                   @      e Zd ZdS )	AxisErrorN__name__
__module____qualname__r	   r	   r	   r
   r          r   c                   @   r   )UFuncTypeErrorNr   r	   r	   r	   r
   r      r   r   c                 C   s    |d ur| j |kr| |} | S N)dtypeto)tensorr   r	   r	   r
   cast_if_needed   s   
r   c                 C   s$   t | jdk r| t  j} | S )N   )r   	_categoryr   r   default_dtypesfloat_dtype)xr	   r	   r
   cast_int_to_float%   s   r   c                 C   s@   | |   kr|k sn t d|  d| | dk r| |7 } | S )Nzaxis z) is out of bounds for array of dimension r   )r   )axndimargnamer	   r	   r
   normalize_axis_index-   s
   r"   Fc                    s   t | ttfvrzt| g} W n	 ty   Y nw t fdd| D } |s@tt| t| kr@ r<td  dtd| S )a  
    Normalizes an axis argument into a tuple of non-negative integer axes.

    This handles shorthands such as ``1`` and converts them to ``(1,)``,
    as well as performing the handling of negative indices covered by
    `normalize_axis_index`.

    By default, this forbids axes from being specified multiple times.
    Used internally by multi-axis-checking logic.

    Parameters
    ----------
    axis : int, iterable of int
        The un-normalized index or indices of the axis.
    ndim : int
        The number of dimensions of the array that `axis` should be normalized
        against.
    argname : str, optional
        A prefix to put before the error message, typically the name of the
        argument.
    allow_duplicate : bool, optional
        If False, the default, disallow an axis from being specified twice.

    Returns
    -------
    normalized_axes : tuple of int
        The normalized axis index, such that `0 <= normalized_axis < ndim`
    c                    s   g | ]}t | qS r	   )r"   .0r   r!   r    r	   r
   
<listcomp>Z   s    z(normalize_axis_tuple.<locals>.<listcomp>zrepeated axis in `z
` argumentzrepeated axis)	typetuplelistoperatorindex	TypeErrorr   set
ValueError)axisr    r!   allow_duplicater	   r%   r
   normalize_axis_tuple6   s   r1   c                 C   s(   | d u r| S t | dkrtd| d S )Nr   zdoes not handle tuple axisr   )r   NotImplementedErrorr/   r	   r	   r
   allow_only_single_axisc   s
   r4   c                    sT   t  ttfvr f t t|  }t | t|  fddt|D }|S )Nc                    s    g | ]}| v r
d nt qS r   )nextr#   r/   shape_itr	   r
   r&   r   s     z expand_shape.<locals>.<listcomp>)r'   r)   r(   r   r1   iterrange)	arr_shaper/   out_ndimshaper	   r7   r
   expand_shapek   s   
r>   c                 C   s<   |d u rd| }|  | } | S t| j|}| |} | S )Nr5   )expand
contiguousr>   r=   reshape)r   r/   r    r=   r	   r	   r
   apply_keepdimsv   s   
rB   r3   c                 G   s*   | du rt dd |D }|dfS || fS )z#Flatten the arrays if axis is None.Nc                 s   s    | ]}|  V  qd S r   )flatten)r$   arr	   r	   r
   	<genexpr>   s    z$axis_none_flatten.<locals>.<genexpr>r   r(   )r/   tensorsr	   r	   r
   axis_none_flatten   s   rH   c                 C   s>   t j}|| j||dstd| j d| d| dt| |S )a  Dtype-cast tensor to target_dtype.

    Parameters
    ----------
    t : torch.Tensor
        The tensor to cast
    target_dtype : torch dtype object
        The array dtype to cast all tensors to
    casting : str
        The casting mode, see `np.can_cast`

     Returns
     -------
    `torch.Tensor` of the `target_dtype` dtype

     Raises
     ------
     ValueError
        if the argument cannot be cast according to the `casting` rule

    )castingzCannot cast array data from z to z according to the rule '')r   can_cast_implr   r,   r   )ttarget_dtyperI   can_castr	   r	   r
   typecast_tensor   s   

rO   c                    s   t  fdd| D S )Nc                 3   s    | ]	}t | V  qd S r   )rO   )r$   rL   rI   rM   r	   r
   rE      s    z#typecast_tensors.<locals>.<genexpr>rF   )rG   rM   rI   r	   rP   r
   typecast_tensors   s   rQ   c                 C   sv   t | tjr	| }nt| }t|j}tj| |d}t||}||j }|dkr3|	d| |j
 }|r9| }|S )a  The core logic of the array(...) function.

    Parameters
    ----------
    obj : tensor_like
        The thing to coerce
    dtype : torch.dtype object or None
        Coerce to this torch dtype
    copy : bool
        Copy or not
    ndmin : int
        The results as least this many dimensions
    is_weak : bool
        Whether obj is a weakly typed python scalar.

    Returns
    -------
    tensor : torch.Tensor
        a tensor object with requested dtype, ndim and copy semantics.

    Notes
    -----
    This is almost a "tensor_like" coersion function. Does not handle wrapper
    ndarrays (those should be handled in the ndarray-aware layer prior to
    invoking this function).
    )r   r   r5   )r   torchTensor	as_tensorr   get_default_dtype_forr   r   r    viewr=   clone)objr   copyndminr   torch_dtype
ndim_extrar	   r	   r
   _coerce_to_tensor   s   
	

r]   c                  G   s   ddl m} t| dkrt S t| dkr<| d }t||r!|jS t|tr:g }|D ]}t|}|| q*t|S |S t| tsCJ t| S )zHConvert all ndarrays from `inputs` to tensors. (other things are intact)r   )ndarrayr   )	_ndarrayr^   r   r.   r   r   r(   ndarrays_to_tensorsappend)inputsr^   input_result	sub_input
sub_resultr	   r	   r
   r`      s    

r`   r   )NF)NFr   )__doc__r*   rR    r   r   r.   
IndexErrorr   r,   RuntimeErrorr   r   r   r"   r1   r4   r>   rB   rH   rO   rQ   r]   r`   r	   r	   r	   r
   <module>   s&    


	-	 
9