o
    han                     @   s  d dl Z d dlZd dlZd dlZd dlmZ d dlm  m  mZ	 d dl
mZ d dlmZmZmZmZmZmZmZmZ ddlmZmZ d dlmZmZ d dlmZmZmZmZm Z m!Z! d dl"m#Z# d d	l$m%Z% d d	l$m%Z& g d
Z'ej(ej)j(ej*ej)j*iej)j(ejj(ej)j*ejj*idZ+dd Z,	d7ddZ-d8ddZ.dd Z/dd Z0d9ddZ1d:ddZ2dd Z3dd Z4			d;d d!Z5d"d# Z6d$d% Z7d<d&d'Z8dej9ddfd(d)Z:d<d*d+Z;d9d,d-Z<	.	d=d/d0Z=		d>d1d2Z>d3d4 Z?d?d5d6Z@dS )@    N)_FusedModule))get_default_dynamic_quant_module_mappings(get_default_static_quant_module_mappings2get_default_static_quant_reference_module_mappingsget_default_qat_module_mappings$get_default_qconfig_propagation_listno_observer_set_has_special_act_post_process_get_special_act_post_process   )get_qparam_dict)has_no_children_ignoring_parametrizations)DeQuantStubQuantWrapper)_add_module_to_qconfig_obs_ctrdefault_dynamic_qconfigfloat16_dynamic_qconfig!float_qparams_weight_only_qconfig&float_qparams_weight_only_qconfig_4bit_activation_is_memoryless)type_before_parametrizations)_is_activation_post_process)
get_default_custom_config_dictpropagate_qconfig_add_quant_dequantpreparequantizequantize_dynamicprepare_qatquantize_qatconvertswap_module)%float_to_observed_custom_module_class)observed_to_quantized_custom_module_classc                   C   s   t S )z,Defines the default custom config dict.
    )_DEFAULT_CUSTOM_CONFIG_DICT r%   r%   T/var/www/html/ai/venv/lib/python3.10/site-packages/torch/ao/quantization/quantize.pyr   =   s   r    c           
      C   s   | t| |}| ||}t| d|}tjjj||  t|| }|| _| 	 D ]+\}}|r5|d | n|}	|du sM|| dg v sTt
|| dg v sTt||||	 q)dS )a  This is a helper function for `propagate_qconfig_`

    Args:
        module: input module
        qconfig_dict: dictionary that maps from name of submodule to quantization
                     configuration
        qconfig_parent: quantization config of parent module, we will fallback to
                       this config when there is no specified config for current
                       module
        prefix: corresponding prefix of the current module, used as key in
                qconfig_dict
        prepare_custom_config_dict: dictionary for custom handling of modules
                                    see docs for :func:`~torch.ao.quantization.prepare_fx`

    Return:
        None, module is modified inplace with qconfig attached
    qconfig.Nnon_traceable_module_namenon_traceable_module_class)getr   getattrtorchaoquantizationr(   _assert_valid_qconfigr   named_childrentype_propagate_qconfig_helper)
moduleqconfig_dictqconfig_parentprefixprepare_custom_config_dictmodule_qconfigqconfig_with_device_checknamechildmodule_prefixr%   r%   r&   r4   B   s    
r4   c                 C   s*   |du ri }|du ri }t | ||d dS )a  Propagate qconfig through the module hierarchy and assign `qconfig`
    attribute on each leaf module

    Args:
        module: input module
        qconfig_dict: dictionary that maps from name or type of submodule to
            quantization configuration, qconfig applies to all submodules of a
            given module unless qconfig for the submodules are specified (when
            the submodule already has qconfig attribute)
        prepare_custom_config_dict: dictionary for custom handling of modules
            see docs for :func:`~torch.ao.quantization.prepare_fx`

    Return:
        None, module is modified inplace with qconfig attached
    N)r9   )r4   )r5   r6   r9   r%   r%   r&   r   j   s
   r   c                 C   s
   |  |S )z3Forward hook that calls observer on the output
    activation_post_process)selfinputoutputr%   r%   r&   _observer_forward_hook   s   
rD   c                 C   s   |  |d S )z7Forward pre hook that calls observer on the output
    r   r?   )rA   rB   r%   r%   r&   _observer_forward_pre_hook   s   rE   Fc                 C   s:   t | ds	J d|r| jtdd}d S | jtdd}d S )Nr@   zGExpect activation_post_process attribute already attached to the moduleT)prepend)hasattrregister_forward_pre_hookrE   register_forward_hookrD   )r5   pre_hookhandler%   r%   r&   &_register_activation_post_process_hook   s   

rL   c                    s  |du rt  }|du ri } du r0t| }t|dks"J d| t|dkr.tt|nd ddddd d fd	d
	}|  D ]\}}t|tjfv rSqFt|t	j
t	jfv ri|rh|j |_qFt|trw|rv|| qF|durt||v r|r|| qFt|rt|}	|||	 qF|rt||v r|t| |}
t| ||
 |t| t vr||
 qFt||| | qFt| rt| tjjst| |v r||  dS dS dS dS )as  Add observer for the leaf child of the module.

    This function insert observer module to all leaf child module that
    has a valid qconfig attribute.

    Args:
        module: input module with qconfig attributes for all the leaf modules that we want to quantize
        qconfig_propagation_list: a list of quantizable modules that will have observers added to them
            if they are leaf nodes
        device: parent device, if any
        non_leaf_module_list: list of non-leaf modules we want to add observer

    Return:
        None, module is modified inplace with added observer modules and forward_hooks
    Nr   zR_add_observer_ only works with cpu or single-device CUDA modules, but got devices r   c                 S   s,   |d u r|   n| }|d ur|| |S N)
activationto)r(   devicespecial_act_post_processrN   r%   r%   r&   get_activation_post_process   s   
z3_add_observer_.<locals>.get_activation_post_processc                 S   s   t | do	| jd uS )Nr(   rG   r(   )mr%   r%   r&   needs_observation      z)_add_observer_.<locals>.needs_observationc                    sF   | rt | ts!| d| j | t| t| jd dS dS dS )zn Adds an activation post process module and register
        a pre or post hook that calls the module
        r@   rJ   N)
isinstancer   
add_moduler(   rL   r   )rT   rQ   rP   rR   rU   r%   r&   insert_activation_post_process   s   z6_add_observer_.<locals>.insert_activation_post_processrM   )r   _get_unique_devices_lennextiterr2   r   nnDropoutnnqFloatFunctionalQFunctionalr(   r@   rX   r   r	   r
   
from_floatsetattrr   _add_observer_r   r.   
Sequential)r5   qconfig_propagation_listnon_leaf_module_listrP   custom_module_class_mappingdevicesr[   r<   r=   rQ   observed_childr%   rZ   r&   rg      sV   

rg   c                 C   s$   dd |   D dd |  D B S )Nc                 S      h | ]}|j qS r%   rP   .0pr%   r%   r&   	<setcomp>       z'_get_unique_devices_.<locals>.<setcomp>c                 S   rn   r%   ro   rp   r%   r%   r&   rs      rt   )
parametersbuffersr5   r%   r%   r&   r\      s   r\   c                 C   sD   t | rt| dr| jrt| S |  D ]\}}t|| j|< q| S )a{  Wrap the leaf child module in QuantWrapper if it has a valid qconfig
    Note that this function will modify the children of module inplace and it
    can return a new module which wraps the input module as well.

    Args:
        module: input module with qconfig attributes for all the leaf modules
        that we want to quantize

    Return:
        Either the inplace modified module with submodules wrapped in
        `QuantWrapper` based on qconfig or a new `QuantWrapper` module which
        wraps the input module, the latter case only happens when the input
        module is a leaf module and we want to quantize it.
    r(   )r   rG   r(   r   r2   r   _modules)r5   r<   r=   r%   r%   r&   r      s
   r   c                 C   s   t jd |du rt }|di }|st| } |}|du r#t }t| dd t	dd | 
 D s9td t| |||d | S )	a  Prepares a copy of the model for quantization calibration or quantization-aware training.

    Quantization configuration should be assigned preemptively
    to individual submodules in `.qconfig` attribute.

    The model will be attached with observer or fake quant modules, and qconfig
    will be propagated.

    Args:
        `model`: input model to be modified in-place
        `inplace`: carry out model transformations in-place, the original module is mutated
        `allow_list`: list of quantizable modules
        `observer_non_leaf_module_list`: list of non-leaf modules we want to add observer
        `prepare_custom_config_dict`: customization configuration dictionary for prepare function

    .. code-block:: python

       # Example of prepare_custom_config_dict:
       prepare_custom_config_dict = {
           # user will manually define the corresponding observed
           # module class which has a from_float class method that converts
           # float custom module to observed custom module
           "float_to_observed_custom_module_class": {
               CustomModule: ObservedCustomModule
           }
        }

    z!quantization_api.quantize.prepareNr"   r6   c                 s   s     | ]}t |d o|jV  qdS )r(   NrS   )rq   rT   r%   r%   r&   	<genexpr>4  s    zprepare.<locals>.<genexpr>zNone of the submodule got qconfig applied. Make sure you passed correct configuration through `qconfig_dict` or by assigning the `.qconfig` attribute directly on submodules)rk   )r.   _C_log_api_usage_oncer   r,   copydeepcopyr   r   anymoduleswarningswarnrg   )modelinplace
allow_listobserver_non_leaf_module_listr9   rk   ri   r%   r%   r&   r     s"   

r   c                    sD   t  drt jrt d d fdd	}|dd |dd d S )Nr@   Fc                    s^   | r j n j}| rtnt}t }| D ]\}}||u r"|| q|D ]}|| q%d S rM   )_forward_pre_hooks_forward_hooksrE   rD   setitemsaddpop)rJ   hook_mapobserver_hookhandle_ids_to_remove	handle_idhook_fnrw   r%   r&   remove_hooksF  s   
z5_remove_activation_post_process.<locals>.remove_hooksTrW   F)rG   r   r@   delattr)r5   r   r%   rw   r&   _remove_activation_post_process>  s   



r   c                 C   s0   |   D ]}t| qt| dr| `t|  dS )zClean up the qconfig left in the module so that new qconfig can be
    propagated.

    Args:
        module: module to be cleaned up
    r(   N)children_remove_qconfigrG   r(   r   )r5   r=   r%   r%   r&   r   T  s
   

r   c                 C   s^   t jd |du rt }|st| } |   t| dd || g|R   t| |dd | S )a  Quantize the input float model with post training static quantization.

    First it will prepare the model for calibration, then it calls
    `run_fn` which will run the calibration step, after that we will
    convert the model to a quantized model.

    Args:
        model: input float model
        run_fn: a calibration function for calibrating the prepared model
        run_args: positional arguments for `run_fn`
        inplace: carry out model transformations in-place, the original module is mutated
        mapping: correspondence between original module types and quantized counterparts

    Return:
        Quantized model.
    z"quantization_api.quantize.quantizeNTr   )	r.   r{   r|   r   r}   r~   evalr   r    )r   run_fnrun_argsmappingr   r%   r%   r&   r   c  s   
r   c                 C   sj  t jd |du r_|t jkr$tjttjttjttj	ttj
ttjti}nq|t jkr>tjttjttjttj	ttj
ttjti}nW|t jkrLtjttjti}nI|t jkrWtjti}n>td| dt|tr|t ju rlt}n|t ju rtt}n|t ju r|t}n|t ju rt}ntdt|tt|t|}|du rt }|st| } |    t!| | t"| |dd | S )av  Converts a float model to dynamic (i.e. weights-only) quantized model.

    Replaces specified modules with dynamic weight-only quantized versions and output the quantized model.

    For simplest usage provide `dtype` argument that can be float16 or qint8. Weight-only quantization
    by default is performed for layers with large weights size - i.e. Linear and RNN variants.

    Fine grained control is possible with `qconfig` and `mapping` that act similarly to `quantize()`.
    If `qconfig` is provided, the `dtype` argument is ignored.

    Args:
        model: input model
        qconfig_spec: Either:

            - A dictionary that maps from name or type of submodule to quantization
              configuration, qconfig applies to all submodules of a given
              module unless qconfig for the submodules are specified (when the
              submodule already has qconfig attribute). Entries in the dictionary
              need to be QConfig instances.

            - A set of types and/or submodule names to apply dynamic quantization to,
              in which case the `dtype` argument is used to specify the bit-width

        inplace: carry out model transformations in-place, the original module is mutated
        mapping: maps type of a submodule to a type of corresponding dynamically quantized version
            with which the submodule needs to be replaced

    z*quantization_api.quantize.quantize_dynamicNz5Don't know how to quantize with default settings for z. Provide full qconfig pleasez.Unknown dtype specified for quantize_dynamic: Tr   )#r.   r{   r|   qint8r`   Linearr   LSTMGRULSTMCellRNNCellGRUCellfloat16r   quint8EmbeddingBagr   	Embeddingquint4x2r   
ValueErrorrX   r   RuntimeErrorstrdictzip	itertoolsrepeatr   r}   r~   r   r   r    )r   qconfig_specdtyper   r   default_qconfigr%   r%   r&   r     s^   











r   c                 C   sl   t jd | jsJ d|du rt }|st| } t| dd t| |ddd t	| t
| dd | S )	a  
    Prepares a copy of the model for quantization calibration or
    quantization-aware training and converts it to quantized version.

    Quantization configuration should be assigned preemptively
    to individual submodules in `.qconfig` attribute.

    Args:
        model: input model to be modified in-place
        mapping: dictionary that maps float modules to quantized modules to be
                 replaced.
        inplace: carry out model transformations in-place, the original module
                 is mutated
    z%quantization_api.quantize.prepare_qatz1prepare_qat only works on models in training modeNry   TF)r   r   remove_qconfig)r   r   )r.   r{   r|   trainingr   r}   r~   r   r    r   r   values)r   r   r   r%   r%   r&   r     s   
r   c                 C   sN   t jd |st| } |   t| dd || g|R   t| dd | S )ag  Do quantization aware training and output a quantized model

    Args:
        model: input model
        run_fn: a function for evaluating the prepared model, can be a
                function that simply runs the prepared model or a training
                loop
        run_args: positional arguments for `run_fn`

    Return:
        Quantized model.
    z&quantization_api.quantize.quantize_qatTr   )r.   r{   r|   r}   r~   trainr   r    )r   r   r   r   r%   r%   r&   r     s   
r   Tc                 C   s<   t jd |st| } t| |d||d |rt|  | S )ag  Converts submodules in input module to a different module according to `mapping`
    by calling `from_float` method on the target module class. And remove qconfig at the
    end if remove_qconfig is set to True.

    Args:
        `module`: prepared and calibrated module
        `mapping`: a dictionary that maps from source module type to target
                   module type, can be overwritten to allow swapping user defined
                   Modules
        `inplace`: carry out model transformations in-place, the original module
                   is mutated
        `convert_custom_config_dict`: custom configuration dictionary for convert function

    .. code-block:: python

       # Example of convert_custom_config_dict:
       convert_custom_config_dict = {
           # user will manually define the corresponding quantized
           # module class which has a from_observed class method that converts
           # observed custom module to quantized custom module
           "observed_to_quantized_custom_module_class": {
               ObservedCustomModule: QuantizedCustomModule
           }
       }

    z!quantization_api.quantize.convertT)r   is_referenceconvert_custom_config_dict)r.   r{   r|   r}   r~   _convertr   )r5   r   r   r   r   r   r%   r%   r&   r      s   
r    c                 C   s   |du r|r	t  nt }|du rt }|di }|s t| } i }|  D ]\}}t|ts=t	||vr=t
||d|| t|||||< q&| D ]	\}	}
|
| j|	< qJ| S )a  Converts submodules in input module to a different module according to `mapping`
    by calling `from_float` method on the target module class

    Args:
        module: input module
        mapping: a dictionary that maps from source module type to target
                 module type, can be overwritten to allow swapping user defined
                 Modules
        inplace: carry out model transformations in-place, the original module
                 is mutated
        is_reference: a flag to enable quantized reference module

    Nr#   T)r   r   r   r,   r}   r~   r2   rX   r   r   r   r!   r   rx   )r5   r   r   r   r   rk   reassignr<   modkeyvaluer%   r%   r&   r   -  s(   


r   c                 C   s>  | }t | dr| jdurd}t| |v r |t|  | }d}n7t| |v rW|t|  }t |drP|jrP| jdus;J | j }|| j t|}|| |}n|| }d}|r| j	 D ]}|
| q^| j	 D ]}	|	turv||	 qkt| }
t|
dksJ d|
 t|
dkrtt|
nd}|r|| |S )	a	  Swaps the module if it has a quantized counterpart and it has an
    `observer` attached.

    Args:
        mod: input module
        mapping: a dictionary that maps from nn module to nnq module

    Return:
        The corresponding quantized module of `mod`
    r(   NFT_IS_REFERENCEr   zOswap_module only works with cpu or single-device CUDA modules, but got devices r   )rG   r(   r   from_observedr   weightr   re   r   r   rH   r   rD   rI   r\   r]   r^   r_   rO   )r   r   rk   new_modswappedqmodweight_post_processweight_qparamspre_hook_fnr   rl   rP   r%   r%   r&   r!   U  s>   




r!   c                 C   sZ   dd }t | dr| j|||d < |  D ]\}}|r"||| n|}t||| qdS )a,  Traverse the modules and save all observers into dict.
    This is mainly used for quantization accuracy debug
    Args:
        mod: the top module we want to save all observers
        prefix: the prefix for the current module
        target_dict: the dictionary used to save all the observers
    c                 S   s   | dkr| S | d S )Nr'   r)   r%   )r8   r%   r%   r&   
get_prefix  rV   z&_get_observer_dict.<locals>.get_prefixr@   N)rG   r@   r2   _get_observer_dict)r   target_dictr8   r   r<   r=   r>   r%   r%   r&   r     s   
r   )Nr'   N)NNr   )NNNN)FNNN)NF)NFTFN)NFFN)r'   )Ar}   r   r   r.   torch.nnr`   torch.ao.nn.quantizedr/   	quantizedrb   torch.ao.nn.intrinsicr   +torch.ao.quantization.quantization_mappingsr   r   r   r   r   r   r	   r
   utilsr   r   torch.ao.quantization.stubsr   r   torch.ao.quantization.qconfigr   r   r   r   r   r   torch.nn.utils.parametrizer   torch.ao.quantization.observerr   is_activation_post_process__all__r   quantizableMultiheadAttentionr$   r   r4   r   rD   rE   rL   rg   r\   r   r   r   r   r   r   r   r   r   r    r   r!   r   r%   r%   r%   r&   <module>   sh    (
 



(

U
8


U

(
(1