o
    h4}                     @   s  d dl mZmZmZmZmZ d dlZd dlZd dlZd dl	m
Z
 d dlmZ ddlmZ ddlmZmZ ddlmZ dd	lmZ dd
lmZ ddlmZmZ ddlmZ ddlmZmZmZ ddl m!Z! ddl m"Z" ddl#m$Z$ dee
ej%j&f dee'ef ddfddZ(dej%j&ddfddZ)de
ddfddZ*dej%j&ddfddZ+		dBde
de,deeee'ef df deeee'ef df de
f
dd Z-				!dCdej%j&d"ee$ee'ef f de,d#eed$f d%eeee'ef df d&eee$ee'ef f  deeee'ef df d'e,de
fd(d)Z.		dBdej%j&d"ee$ee'ef f de,d#eed$f d%eeee'ef df deeee'ef df de
fd*d+Z/		dBdej%j&deeee'ef df deeee'ef df de
fd,d-Z0			dDdej%j&d"ee$ee'ef f d#eed$f d%eeee'ef df d&eee$ee'ef f  deeee'ef df de
fd.d/Z1		dBdej%j&d"ee$ee'ef f d#eed$f d%eeee'ef df deeee'ef df de
fd0d1Z2		!	2			!dEd3e
d4e,d5eeee'ef df d'e,d6e,d"ee$ee'ef df deeee'ef df d7e,de
fd8d9Z3		2		dFd3e
d5eeee'ef df d6e,d"ee$ee'ef df deeee'ef df de
fd:d;Z4		2		dFd3e
d5eeee'ef df d6e,d"ee$ee'ef df deeee'ef df de
fd<d=Z5		2		dFd3e
d5eeee'ef df d6e,d"ee$ee'ef df deeee'ef df de
fd>d?Z6	!	dGd3e
d4e,d5eeee'ef df de
fd@dAZ7dS )H    )AnyDictOptionalTupleUnionN)GraphModule)_USER_PRESERVED_ATTRIBUTES_KEY   )QuantizationTracer)ScopeScopeContextManager)fuse)prepare)convert)BackendConfigget_tensorrt_backend_config)ObservedGraphModule)ConvertCustomConfigFuseCustomConfigPrepareCustomConfig)get_custom_module_class_keys)#get_skipped_module_name_and_classes)QConfigMappingmodelpreserved_attrsreturnc                 C   s8   t  || jt< | jt  D ]
\}}t| || qdS )z^ Store preserved attributes to the model.meta so that it can be preserved during deepcopy
    N)copymetar   itemssetattr)r   r   	attr_nameattr r"   W/var/www/html/ai/venv/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.pyattach_preserved_attrs_to_model   s   r$   c                 C   s*   t | tstdtt|  d d d S )Nz,input model must be a GraphModule, Got type:z Please make zsure to follow the tutorials.)
isinstancer   
ValueErrorstrtyper   r"   r"   r#   _check_is_graph_module*   s   

r*   c                 C   s"   | j jD ]
}t|dsi |_qdS )a   Attach meta field to all nodes of the graph if it does not exist,
    meta field is a field stores some meta information about the node, such
    as dtype and shape information for output of the node, this only exists
    if the program is captured by make_fx (used in quantize_pt2e flow), if
    the program is captured by torch.fx symbolic tracing, this field may not exist,
    so we add it here to avoid checking this all over the places
    r   N)graphnodeshasattrr   )r   noder"   r"   r#   !_attach_meta_to_node_if_not_exist4   s
   
r/   c                 C   sf   g }|   D ]\}}t|tjjjjr|| qt| q|D ]}| j	|= tjjj
 | j	|< q dS )z1 Swap FloatFunctional with FXFloatFunctional
    N)named_childrenr%   torchaonn	quantizedFloatFunctionalappend_swap_ff_with_fxff_modulesFXFloatFunctional)r   modules_to_swapnamemoduler"   r"   r#   r7   @   s   
r7   is_qatfuse_custom_configbackend_configc                 C   s   t |  t| |||S )z Internal helper function to fuse modules in preparation for quantization

    Args:
        model: GraphModule object from symbolic tracing (torch.fx.symbolic_trace)
    )r*   r   )r   r=   r>   r?   r"   r"   r#   _fuse_fxO   s   r@   Fqconfig_mappingexample_inputs.prepare_custom_config_equalization_configis_standalone_modulec                    s   |du rt  }|du rt }t|trtd t |}t  t||\}}	|j	}
 fdd|
D }t
||	}t | }t| t |j	}t||||}t||||j|||||d	}t|| |S )a7   Internal helper function for prepare_fx
    Args:
      `model`, `qconfig_mapping`, `prepare_custom_config`, `_equalization_config`:
      see docs for :func:`~torch.ao.quantization.prepare_fx`
      `is_standalone_module`: a boolean flag indicates whether we are
      quantizing a standalone module or not, a standalone module
      is a submodule of the parent module that is not inlined in the
forward graph of the parent module,
      the way we quantize standalone module is described in:
      :func:`~torch.ao.quantization._prepare_standalone_module_fx`
    NzPassing a prepare_custom_config_dict to prepare is deprecated and will not be supported in a future version. Please pass in a PrepareCustomConfig instead.c                    "   i | ]}t  |r|t |qS r"   r-   getattr.0r!   r)   r"   r#   
<dictcomp>      " z_prepare_fx.<locals>.<dictcomp>)rB   rC   rD   r?   rE   )r   r   r%   r   warningswarn	from_dictr7   r   preserved_attributesr
   r   tracer/   r   set_preserved_attributesr@   r   node_name_to_scoper$   )r   rA   r=   rB   rC   rD   r?   rE   skipped_module_namesskipped_module_classespreserved_attr_namesr   tracergraph_moduler>   preparedr"   r)   r#   _prepare_fx^   sJ   



rZ   c              	   C   s   t | |||||ddS )a   [Internal use only] Prepare a standalone module, so that it can be used when quantizing the
    parent module.
    standalone_module means it a submodule that is not inlined in parent module,
    and will be quantized separately as one unit.

    How the standalone module is observed is specified by `input_quantized_idxs` and
    `output_quantized_idxs` in the prepare_custom_config for the standalone module

    Returns:

        * model(GraphModule): prepared standalone module. It has these attributes in
          model.meta:

            * `standalone_module_input_quantized_idxs(List[Int])`: a list of
              indexes for the graph input that is expected to be quantized,
              same as input_quantized_idxs configuration provided
              for the standalone module
            * `standalone_module_output_quantized_idxs(List[Int])`: a list of
              indexs for the graph output that is quantized
              same as input_quantized_idxs configuration provided
              for the standalone module

    T)r?   rE   )rZ   )r   rA   r=   rB   rC   r?   r"   r"   r#   _prepare_standalone_module_fx   s   r[   c                    s   |du rt  }t|trtd t |}tjd |j	} fdd|D }tj
 }t| t|d||}t|| |S )a   Fuse modules like conv+bn, conv+bn+relu etc, model must be in eval mode.
    Fusion rules are defined in torch.ao.quantization.fx.fusion_pattern.py

    Args:

        * `model` (torch.nn.Module): a torch.nn.Module model
        * `fuse_custom_config` (FuseCustomConfig): custom configurations for fuse_fx.
            See :class:`~torch.ao.quantization.fx.custom_config.FuseCustomConfig` for more details
    Example::

        from torch.ao.quantization import fuse_fx
        m = Model().eval()
        m = fuse_fx(m)

    NzPassing a fuse_custom_config_dict to fuse is deprecated and will not be supported in a future version. Please pass in a FuseCustomConfig instead.z$quantization_api.quantize_fx.fuse_fxc                    rF   r"   rG   rI   r)   r"   r#   rK      rL   zfuse_fx.<locals>.<dictcomp>F)r   r%   r   rM   rN   rO   r1   _C_log_api_usage_oncerP   fxsymbolic_tracer/   r@   r$   )r   r>   r?   rV   r   rX   r"   r)   r#   fuse_fx   s   


r`   c                 C   s    t jd t| |d||||S )a   Prepare a model for post training static quantization

    Args:
      * `model` (torch.nn.Module): torch.nn.Module model

      * `qconfig_mapping` (QConfigMapping): QConfigMapping object to configure how a model is
         quantized, see :class:`~torch.ao.quantization.qconfig_mapping.QConfigMapping`
         for more details

      * `example_inputs` (Tuple[Any, ...]): Example inputs for forward function of the model,
         Tuple of positional args (keyword args can be passed as positional args as well)

      * `prepare_custom_config` (PrepareCustomConfig): customization configuration for quantization tool.
          See :class:`~torch.ao.quantization.fx.custom_config.PrepareCustomConfig` for more details

      * `_equalization_config`: config for specifying how to perform equalization on the model

      * `backend_config` (BackendConfig): config that specifies how operators are quantized
         in a backend, this includes how the operators are observed,
         supported fusion patterns, how quantize/dequantize ops are
         inserted, supported dtypes etc. See :class:`~torch.ao.quantization.backend_config.BackendConfig` for more details

    Return:
      A GraphModule with observer (configured by qconfig_mapping), ready for calibration

    Example::

        import torch
        from torch.ao.quantization import get_default_qconfig_mapping
        from torch.ao.quantization.quantize_fx import prepare_fx

        class Submodule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
            def forward(self, x):
                x = self.linear(x)
                return x

        class M(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
                self.sub = Submodule()

            def forward(self, x):
                x = self.linear(x)
                x = self.sub(x) + x
                return x

        # initialize a floating point model
        float_model = M().eval()

        # define calibration function
        def calibrate(model, data_loader):
            model.eval()
            with torch.no_grad():
                for image, target in data_loader:
                    model(image)

        # qconfig is the configuration for how we insert observers for a particular
        # operator
        # qconfig = get_default_qconfig("fbgemm")
        # Example of customizing qconfig:
        # qconfig = torch.ao.quantization.QConfig(
        #    activation=MinMaxObserver.with_args(dtype=torch.qint8),
        #    weight=MinMaxObserver.with_args(dtype=torch.qint8))
        # `activation` and `weight` are constructors of observer module

        # qconfig_mapping is a collection of quantization configurations, user can
        # set the qconfig for each operator (torch op calls, functional calls, module calls)
        # in the model through qconfig_mapping
        # the following call will get the qconfig_mapping that works best for models
        # that target "fbgemm" backend
        qconfig_mapping = get_default_qconfig_mapping("fbgemm")

        # We can customize qconfig_mapping in different ways.
        # e.g. set the global qconfig, which means we will use the same qconfig for
        # all operators in the model, this can be overwritten by other settings
        # qconfig_mapping = QConfigMapping().set_global(qconfig)
        # e.g. quantize the linear submodule with a specific qconfig
        # qconfig_mapping = QConfigMapping().set_module_name("linear", qconfig)
        # e.g. quantize all nn.Linear modules with a specific qconfig
        # qconfig_mapping = QConfigMapping().set_object_type(torch.nn.Linear, qconfig)
        # for a more complete list, please see the docstring for :class:`torch.ao.quantization.QConfigMapping`
        # argument

        # example_inputs is a tuple of inputs, that is used to infer the type of the
        # outputs in the model
        # currently it's not used, but please make sure model(*example_inputs) runs
        example_inputs = (torch.randn(1, 3, 224, 224),)

        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        # `prepare_fx` inserts observers in the model based on qconfig_mapping and
        # backend_config. If the configuration for an operator in qconfig_mapping
        # is supported in the backend_config (meaning it's supported by the target
        # hardware), we'll insert observer modules according to the qconfig_mapping
        # otherwise the configuration in qconfig_mapping will be ignored
        #
        # Example:
        # in qconfig_mapping, user sets linear module to be quantized with quint8 for
        # activation and qint8 for weight:
        # qconfig = torch.ao.quantization.QConfig(
        #     observer=MinMaxObserver.with_args(dtype=torch.quint8),
        #     weight=MinMaxObserver.with-args(dtype=torch.qint8))
        # Note: current qconfig api does not support setting output observer, but
        # we may extend this to support these more fine grained control in the
        # future
        #
        # qconfig_mapping = QConfigMapping().set_object_type(torch.nn.Linear, qconfig)
        # in backend config, linear module also supports in this configuration:
        # weighted_int8_dtype_config = DTypeConfig(
        #   input_dtype=torch.quint8,
        #   output_dtype=torch.quint8,
        #   weight_dtype=torch.qint8,
        #   bias_type=torch.float)

        # linear_pattern_config = BackendPatternConfig(torch.nn.Linear) \
        #    .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
        #    .add_dtype_config(weighted_int8_dtype_config) \
        #    ...

        # backend_config = BackendConfig().set_backend_pattern_config(linear_pattern_config)
        # `prepare_fx` will check that the setting requested by suer in qconfig_mapping
        # is supported by the backend_config and insert observers and fake quant modules
        # in the model
        prepared_model = prepare_fx(float_model, qconfig_mapping, example_inputs)
        # Run calibration
        calibrate(prepared_model, sample_inference_data)
    z'quantization_api.quantize_fx.prepare_fxFr1   r\   r]   rZ   )r   rA   rB   rC   rD   r?   r"   r"   r#   
prepare_fx   s    rb   c                 C   s    t jd t| |d|||dS )a   Prepare a model for quantization aware training

    Args:
      * `model` (torch.nn.Module): torch.nn.Module model
      * `qconfig_mapping` (QConfigMapping): see :func:`~torch.ao.quantization.prepare_fx`
      * `example_inputs` (Tuple[Any, ...]): see :func:`~torch.ao.quantization.prepare_fx`
      * `prepare_custom_config` (PrepareCustomConfig): see :func:`~torch.ao.quantization.prepare_fx`
      * `backend_config` (BackendConfig): see :func:`~torch.ao.quantization.prepare_fx`

    Return:
      A GraphModule with fake quant modules (configured by qconfig_mapping and backend_config), ready for
      quantization aware training

    Example::

        import torch
        from torch.ao.quantization import get_default_qat_qconfig_mapping
        from torch.ao.quantization.quantize_fx import prepare_qat_fx

        class Submodule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
            def forward(self, x):
                x = self.linear(x)
                return x

        class M(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
                self.sub = Submodule()

            def forward(self, x):
                x = self.linear(x)
                x = self.sub(x) + x
                return x

        # initialize a floating point model
        float_model = M().train()
        # (optional, but preferred) load the weights from pretrained model
        # float_model.load_weights(...)

        # define the training loop for quantization aware training
        def train_loop(model, train_data):
            model.train()
            for image, target in data_loader:
                ...

        # qconfig is the configuration for how we insert observers for a particular
        # operator
        # qconfig = get_default_qconfig("fbgemm")
        # Example of customizing qconfig:
        # qconfig = torch.ao.quantization.QConfig(
        #    activation=FakeQuantize.with_args(observer=MinMaxObserver.with_args(dtype=torch.qint8)),
        #    weight=FakeQuantize.with_args(observer=MinMaxObserver.with_args(dtype=torch.qint8)))
        # `activation` and `weight` are constructors of observer module

        # qconfig_mapping is a collection of quantization configurations, user can
        # set the qconfig for each operator (torch op calls, functional calls, module calls)
        # in the model through qconfig_mapping
        # the following call will get the qconfig_mapping that works best for models
        # that target "fbgemm" backend
        qconfig_mapping = get_default_qat_qconfig("fbgemm")

        # We can customize qconfig_mapping in different ways, please take a look at
        # the docstring for :func:`~torch.ao.quantization.prepare_fx` for different ways
        # to configure this

        # example_inputs is a tuple of inputs, that is used to infer the type of the
        # outputs in the model
        # currently it's not used, but please make sure model(*example_inputs) runs
        example_inputs = (torch.randn(1, 3, 224, 224),)

        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        # `prepare_qat_fx` inserts observers in the model based on qconfig_mapping and
        # backend_config, if the configuration for an operator in qconfig_mapping
        # is supported in the backend_config (meaning it's supported by the target
        # hardware), we'll insert fake_quantize modules according to the qconfig_mapping
        # otherwise the configuration in qconfig_mapping will be ignored
        # see :func:`~torch.ao.quantization.prepare_fx` for a detailed explanation of
        # how qconfig_mapping interacts with backend_config
        prepared_model = prepare_qat_fx(float_model, qconfig_mapping, example_inputs)
        # Run training
        train_loop(prepared_model, train_loop)

    z+quantization_api.quantize_fx.prepare_qat_fxT)r?   ra   )r   rA   rB   rC   r?   r"   r"   r#   prepare_qat_fx  s   _rc   TrX   is_referenceconvert_custom_config_remove_qconfigis_decomposedc              
      sr   |du rt  }t|trtd t |}t  |j} fdd|D }	t |||||||d}
t	|
|	 |
S )ze `is_standalone_module`: see docs in :func:`~torch.ao.quantization.prepare_standalone_module_fx`
    NzPassing a convert_custom_config_dict to convert is deprecated and will not be supported in a future version. Please pass in a ConvertCustomConfig instead.c                    rF   r"   rG   rI   rX   r"   r#   rK   
  rL   z_convert_fx.<locals>.<dictcomp>)_remove_qconfig_flagrA   r?   rg   )
r   r%   r   rM   rN   rO   r*   rP   r   r$   )rX   rd   re   rE   rf   rA   r?   rg   rV   r   r4   r"   rh   r#   _convert_fx  s,   


rj   c                 C       t jd t| d||||dS )a
   Convert a calibrated or trained model to a quantized model

    Args:
        * `graph_module` (torch.fx.GraphModule): A prepared and calibrated/trained model (GraphModule)

        * `convert_custom_config` (ConvertCustomConfig): custom configurations for convert function.
            See :class:`~torch.ao.quantization.fx.custom_config.ConvertCustomConfig` for more details

        * `_remove_qconfig` (bool): Option to remove the qconfig attributes in the model after convert.

        * `qconfig_mapping` (QConfigMapping): config for specifying how to convert a model for quantization.

           The keys must include the ones in the qconfig_mapping passed to `prepare_fx` or `prepare_qat_fx`,
           with the same values or `None`. Additional keys can be specified with values set to `None`.

          For each entry whose value is set to None, we skip quantizing that entry in the model::

            qconfig_mapping = QConfigMapping
                .set_global(qconfig_from_prepare)
                .set_object_type(torch.nn.functional.add, None)  # skip quantizing torch.nn.functional.add
                .set_object_type(torch.nn.functional.linear, qconfig_from_prepare)
                .set_module_name("foo.bar", None)  # skip quantizing module "foo.bar"

         * `backend_config` (BackendConfig): A configuration for the backend which describes how
            operators should be quantized in the backend, this includes quantization
            mode support (static/dynamic/weight_only), dtype support (quint8/qint8 etc.),
            observer placement for each operators and fused operators.
            See :class:`~torch.ao.quantization.backend_config.BackendConfig` for more details

    Return:
        A quantized model (torch.nn.Module)

    Example::

        # prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
        # convert_fx converts a calibrated/trained model to a quantized model for the
        # target hardware, this includes converting the model first to a reference
        # quantized model, and then lower the reference quantized model to a backend
        # Currently, the supported backends are fbgemm (onednn), qnnpack (xnnpack) and
        # they share the same set of quantized operators, so we are using the same
        # lowering procedure
        #
        # backend_config defines the corresponding reference quantized module for
        # the weighted modules in the model, e.g. nn.Linear
        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        quantized_model = convert_fx(prepared_model)

    z'quantization_api.quantize_fx.convert_fxFrd   re   rf   rA   r?   r1   r\   r]   rj   rX   re   rf   rA   r?   r"   r"   r#   
convert_fx  s   8ro   c                 C   rk   )a~   Convert a calibrated or trained model to a reference quantized model,
    see https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md for more details,
    reference quantized model is a standard representation of a quantized model provided
    by FX Graph Mode Quantization, it can be further lowered to run on the target
    hardware, like accelerators

    Args:
        * `graph_module` (GraphModule): A prepared and calibrated/trained model (GraphModule)

        * `convert_custom_config` (ConvertCustomConfig): custom configurations for convert function.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

        * `_remove_qconfig` (bool): Option to remove the qconfig attributes in the model after convert.

        * `qconfig_mapping` (QConfigMapping): config for specifying how to convert a model for quantization.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

         * `backend_config` (BackendConfig): A configuration for the backend which describes how
            operators should be quantized in the backend. See
            :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

    Return:
        A reference quantized model (GraphModule)

    Example::

        # prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        reference_quantized_model = convert_to_reference_fx(prepared_model)

    z4quantization_api.quantize_fx.convert_to_reference_fxTrl   rm   rn   r"   r"   r#   convert_to_reference_fx^  s   'rp   c              	   C   s"   t jd t| d||||ddS )a   Convert a calibrated or trained model to a reference quantized model, with
    decomposed representation for quantized Tensor
    see https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md for more details,
    reference quantized model is a standard representation of a quantized model provided
    by FX Graph Mode Quantization, it can be further lowered to run on the target
    hardware, like accelerators

    Note: this is not public API

    Args:
        * `graph_module` (GraphModule): A prepared and calibrated/trained model (GraphModule)

        * `convert_custom_config` (ConvertCustomConfig): custom configurations for convert function.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

        * `_remove_qconfig` (bool): Option to remove the qconfig attributes in the model after convert.

        * `qconfig_mapping` (QConfigMapping): config for specifying how to convert a model for quantization.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

         * `backend_config` (BackendConfig): A configuration for the backend which describes how
            operators should be quantized in the backend. See
            :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

    Return:
        A reference quantized model (GraphModule) with operators working with decomposed quantized Tensor

    Example::

        # prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        reference_quantized_model = _convert_to_reference_decomposed_fx(prepared_model)

    z@quantization_api.quantize_fx._convert_to_reference_decomposed_fxT)rd   re   rf   rA   r?   rg   rm   rn   r"   r"   r#   #_convert_to_reference_decomposed_fx  s   *rq   c                 C   s   t | ||ddS )aw   [Internal use only] Convert a model produced by :func:`~torch.ao.quantization.prepare_standalone_module_fx`
    and convert it to a quantized model

    Returns a quantized standalone module, whether input/output is quantized is
    specified by prepare_custom_config, with
    input_quantized_idxs, output_quantized_idxs, please
    see docs for prepare_fx for details
    T)rE   )rj   )rX   rd   re   r"   r"   r#   _convert_standalone_module_fx  s   rr   )NN)NNNF)NNN)NFTNNF)NTNN)FN)8typingr   r   r   r   r   rM   r1   r   torch.fxr   torch.fx.graph_moduler   	fx.tracerr
   r   r   fx.fuser   
fx.preparer   
fx.convertr   r?   r   r   fx.graph_moduler   fx.custom_configr   r   r   fx.utilsr   r   rA   r   r3   Moduler'   r$   r*   r/   r7   boolr@   rZ   r[   r`   rb   rc   rj   ro   rp   rq   rr   r"   r"   r"   r#   <module>   s   




	
G

,
,

 

m	
*
E
3
8