o
    h)                     @   sj   d dl Z d dlZd dlmZ d dlmZ d dlmZmZ dgZ	dd Z
dd	 Zd
d ZG dd deZdS )    N)constraints)Distribution)_standard_normallazy_propertyMultivariateNormalc                 C   s   t | |ddS )a  
    Performs a batched matrix-vector product, with compatible but different batch shapes.

    This function takes as input `bmat`, containing :math:`n \times n` matrices, and
    `bvec`, containing length :math:`n` vectors.

    Both `bmat` and `bvec` may have any number of leading dimensions, which correspond
    to a batch shape. They are not necessarily assumed to have the same batch shape,
    just ones which can be broadcasted.
    )torchmatmul	unsqueezesqueeze)bmatbvec r   ]/var/www/html/ai/venv/lib/python3.10/site-packages/torch/distributions/multivariate_normal.py	_batch_mv   s   r   c                 C   s  | d}|jdd }t|}|  d }|| }|| }|d|  }|jd| }	t| jdd |j|d D ]\}
}|	||
 |
f7 }	q:|	|f7 }	||	}tt|tt||d tt|d |d |g }||}| d||}|d| d|}|ddd}t	j
j||dddd}| }||jdd }tt|}t|D ]}||| || g7 }q||}||S )	aK  
    Computes the squared Mahalanobis distance :math:`\mathbf{x}^\top\mathbf{M}^{-1}\mathbf{x}`
    for a factored :math:`\mathbf{M} = \mathbf{L}\mathbf{L}^\top`.

    Accepts batches for both bL and bx. They are not necessarily assumed to have the same batch
    shape, but `bL` one should be able to broadcasted to `bx` one.
    r   N      r   Fupper)sizeshapelendimzipreshapelistrangepermuter   linalgsolve_triangularpowsumt)bLbxnbx_batch_shapebx_batch_dimsbL_batch_dimsouter_batch_dimsold_batch_dimsnew_batch_dimsbx_new_shapesLsxpermute_dimsflat_Lflat_xflat_x_swapM_swapM
permuted_Mpermute_inv_dimsi
reshaped_Mr   r   r   _batch_mahalanobis   sB   
&





r:   c                 C   sZ   t jt | d}t t |ddd}t j| jd | j| jd}t jj	||dd}|S )N)r   r   r   r   dtypedeviceFr   )
r   r   choleskyflip	transposeeyer   r<   r=   r    )PLfL_invIdLr   r   r   _precision_to_scale_trilK   s
   rG   c                       s   e Zd ZdZejejejejdZejZ	dZ
				d fdd	Zd fdd	Zed	d
 Zedd Zedd Zedd Zedd Zedd Ze fddZdd Zdd Z  ZS )r   a  
    Creates a multivariate normal (also called Gaussian) distribution
    parameterized by a mean vector and a covariance matrix.

    The multivariate normal distribution can be parameterized either
    in terms of a positive definite covariance matrix :math:`\mathbf{\Sigma}`
    or a positive definite precision matrix :math:`\mathbf{\Sigma}^{-1}`
    or a lower-triangular matrix :math:`\mathbf{L}` with positive-valued
    diagonal entries, such that
    :math:`\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top`. This triangular matrix
    can be obtained via e.g. Cholesky decomposition of the covariance.

    Example:

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> m = MultivariateNormal(torch.zeros(2), torch.eye(2))
        >>> m.sample()  # normally distributed with mean=`[0,0]` and covariance_matrix=`I`
        tensor([-0.2102, -0.5429])

    Args:
        loc (Tensor): mean of the distribution
        covariance_matrix (Tensor): positive-definite covariance matrix
        precision_matrix (Tensor): positive-definite precision matrix
        scale_tril (Tensor): lower-triangular factor of covariance, with positive-valued diagonal

    Note:
        Only one of :attr:`covariance_matrix` or :attr:`precision_matrix` or
        :attr:`scale_tril` can be specified.

        Using :attr:`scale_tril` will be more efficient: all computations internally
        are based on :attr:`scale_tril`. If :attr:`covariance_matrix` or
        :attr:`precision_matrix` is passed instead, it is only used to compute
        the corresponding lower triangular matrices using a Cholesky decomposition.
    )loccovariance_matrixprecision_matrix
scale_trilTNc                    s  |  dk r
td|d u|d u |d u dkrtd|d urC|  dk r*tdt|jd d |jd d }||d | _nI|d urj|  dk rQtd	t|jd d |jd d }||d | _n"|  dk rttd
t|jd d |jd d }||d | _||d | _	| j	jdd  }t
 j|||d |d ur|| _d S |d urtj|| _d S t|| _d S )Nr   z%loc must be at least one-dimensional.zTExactly one of covariance_matrix or precision_matrix or scale_tril may be specified.r   zZscale_tril matrix must be at least two-dimensional, with optional leading batch dimensionsr   r   )r   r   zZcovariance_matrix must be at least two-dimensional, with optional leading batch dimensionszYprecision_matrix must be at least two-dimensional, with optional leading batch dimensions)r   validate_args)r   
ValueErrorr   broadcast_shapesr   expandrK   rI   rJ   rH   super__init___unbroadcasted_scale_trilr   r>   rG   )selfrH   rI   rJ   rK   rM   batch_shapeevent_shape	__class__r   r   rR      sT    
zMultivariateNormal.__init__c                    s   |  t|}t|}|| j }|| j | j }| j||_| j|_d| jv r/| j	||_	d| jv r;| j
||_
d| jv rG| j||_tt|j|| jdd | j|_|S )NrI   rK   rJ   FrL   )_get_checked_instancer   r   SizerV   rH   rP   rS   __dict__rI   rK   rJ   rQ   rR   _validate_args)rT   rU   	_instancenew	loc_shape	cov_shaperW   r   r   rP      s"   





zMultivariateNormal.expandc                 C   s   | j | j| j | j S N)rS   rP   _batch_shape_event_shaperT   r   r   r   rK      s   zMultivariateNormal.scale_trilc                 C   s&   t | j| jj| j| j | j S ra   )r   r	   rS   mTrP   rb   rc   rd   r   r   r   rI      s
   
z$MultivariateNormal.covariance_matrixc                 C   s    t | j| j| j | j S ra   )r   cholesky_inverserS   rP   rb   rc   rd   r   r   r   rJ      s   z#MultivariateNormal.precision_matrixc                 C      | j S ra   rH   rd   r   r   r   mean      zMultivariateNormal.meanc                 C   rg   ra   rh   rd   r   r   r   mode   rj   zMultivariateNormal.modec                 C   s    | j dd| j| j S )Nr   r   )rS   r!   r"   rP   rb   rc   rd   r   r   r   variance   s   
zMultivariateNormal.variancec                 C   s2   |  |}t|| jj| jjd}| jt| j| S )Nr;   )_extended_shaper   rH   r<   r=   r   rS   )rT   sample_shaper   epsr   r   r   rsample   s   
zMultivariateNormal.rsamplec                 C   sf   | j r| | || j }t| j|}| jjddd d}d| jd t	dt	j
  |  | S )Nr   r   dim1dim2g      r   r   )r\   _validate_samplerH   r:   rS   diagonallogr"   rc   mathpi)rT   valuediffr5   half_log_detr   r   r   log_prob   s   

&zMultivariateNormal.log_probc                 C   s^   | j jddd d}d| jd  dtdtj   | }t| jdkr)|S |	| jS )Nr   r   rq   g      ?r   g      ?r   )
rS   ru   rv   r"   rc   rw   rx   r   rb   rP   )rT   r{   Hr   r   r   entropy   s   &zMultivariateNormal.entropy)NNNNra   )__name__
__module____qualname____doc__r   real_vectorpositive_definitelower_choleskyarg_constraintssupporthas_rsamplerR   rP   r   rK   rI   rJ   propertyri   rk   rl   r   rZ   rp   r|   r~   __classcell__r   r   rW   r   r   T   s<    $9






)rw   r   torch.distributionsr    torch.distributions.distributionr   torch.distributions.utilsr   r   __all__r   r:   rG   r   r   r   r   r   <module>   s    2	