o
    h                     @   s^   d dl mZ d dlZd dlmZ d dlmZ d dlmZ d dlm	Z	 dgZ
G dd deZdS )	    )NumberN)nan)constraints)Distribution)broadcast_allUniformc                       s   e Zd ZdZejdddejddddZdZedd Z	ed	d
 Z
edd Zedd Zd  fdd	Zd  fdd	Zejddddd Ze fddZdd Zdd Zdd Zdd Z  ZS )!r   a  
    Generates uniformly distributed random samples from the half-open interval
    ``[low, high)``.

    Example::

        >>> m = Uniform(torch.tensor([0.0]), torch.tensor([5.0]))
        >>> m.sample()  # uniformly distributed in the range [0.0, 5.0)
        >>> # xdoctest: +SKIP
        tensor([ 2.3418])

    Args:
        low (float or Tensor): lower range (inclusive).
        high (float or Tensor): upper range (exclusive).
    Fr   )is_discrete	event_dim)lowhighTc                 C   s   | j | j d S )N   r   r
   self r   Q/var/www/html/ai/venv/lib/python3.10/site-packages/torch/distributions/uniform.pymean#      zUniform.meanc                 C   s
   t | j S N)r   r   r   r   r   r   mode'   s   
zUniform.modec                 C   s   | j | j d S )NgLXz@r   r   r   r   r   stddev+   r   zUniform.stddevc                 C   s   | j | j dd S )Nr      )r   r
   powr   r   r   r   variance/   s   zUniform.varianceNc                    st   t ||\| _| _t|trt|trt }n| j }t j	||d | j
r6t| j| j s8tdd S d S )Nvalidate_argsz&Uniform is not defined when low>= high)r   r
   r   
isinstancer   torchSizesizesuper__init___validate_argsltall
ValueError)r   r
   r   r   batch_shape	__class__r   r   r!   3   s   

zUniform.__init__c                    sR   |  t|}t|}| j||_| j||_tt|j|dd | j	|_	|S )NFr   )
_get_checked_instancer   r   r   r
   expandr   r    r!   r"   )r   r&   	_instancenewr'   r   r   r*   ?   s   
zUniform.expandc                 C   s   t | j| jS r   )r   intervalr
   r   r   r   r   r   supportH   r   zUniform.supportc                 C   s8   |  |}tj|| jj| jjd}| j|| j| j   S )N)dtypedevice)_extended_shaper   randr
   r/   r0   r   )r   sample_shapeshaper2   r   r   r   rsampleL   s   
zUniform.rsamplec                 C   sZ   | j r| | | j|| j}| j|| j}t|	|t| j| j  S r   )
r"   _validate_sampler
   letype_asr   gtr   logmul)r   valuelbubr   r   r   log_probQ   s
   
"zUniform.log_probc                 C   s4   | j r| | || j | j| j  }|jdddS )Nr      )minmax)r"   r6   r
   r   clampr   r<   resultr   r   r   cdfX   s   
zUniform.cdfc                 C   s   || j | j  | j }|S r   r   rD   r   r   r   icdf^   s   zUniform.icdfc                 C   s   t | j| j S r   )r   r:   r   r
   r   r   r   r   entropyb   s   zUniform.entropyr   )__name__
__module____qualname____doc__r   	dependentarg_constraintshas_rsamplepropertyr   r   r   r   r!   r*   dependent_propertyr.   r   r   r5   r?   rF   rG   rH   __classcell__r   r   r'   r   r      s.    



	
)numbersr   r   r   torch.distributionsr    torch.distributions.distributionr   torch.distributions.utilsr   __all__r   r   r   r   r   <module>   s    