o
    h5                     @   sl  d dl Z d dl mZ ddlmZmZmZmZmZmZm	Z	 d dl
mZmZ ddgZG dd deZd	d
e de	 de d e_			d!dee dee dee dee dedee dedededededefddZdd Zdee dee dee dee dededededededefddZdee dee dee dee dededededededefdd ZdS )"    N)Tensor   )	Optimizer_use_grad_for_differentiable
_get_value_default_to_fused_or_foreach_differentiable_doc_foreach_doc_maximize_doc)ListOptionalAdagradadagradc                       sn   e Zd Z						dddddee ded	ef fd
dZ fddZdd Zdd Ze	dddZ
  ZS )r   {Gz?r   绽|=NF)maximizedifferentiableforeachr   r   c             
      s   d|kst d| d|kst d| d|ks!t d| d|ks,t d| d|ks7t d| t||||||||	d}
t ||
 | jD ],}|d D ]%}| j| }td|d	< t|rkt	||n|}tj
||tjd
|d< qSqMd S )Ng        zInvalid learning rate: zInvalid lr_decay value: zInvalid weight_decay value: z)Invalid initial_accumulator_value value: zInvalid epsilon value: )lrlr_decayepsweight_decayinitial_accumulator_valuer   r   r   paramsstep)memory_formatsum)
ValueErrordictsuper__init__param_groupsstatetorchtensor
is_complexcomplex	full_likepreserve_format)selfr   r   r   r   r   r   r   r   r   defaultsgrouppr"   
init_value	__class__ I/var/www/html/ai/venv/lib/python3.10/site-packages/torch/optim/adagrad.pyr       sH   


zAdagrad.__init__c                    s   t  | | jD ]}|dd  |dd |dd q	t| j }t|dko3t	|d d }|sF|D ]}t
t|d |d< q8d S d S )Nr   r   Fr   r   r   )r   __setstate__r!   
setdefaultlistr"   valueslenr#   	is_tensorr$   float)r)   r"   r+   state_valuesstep_is_tensorsr.   r0   r1   r2   ?   s   

zAdagrad.__setstate__c                 C   s4   | j D ]}|d D ]}| j| }|d   q	qd S )Nr   r   )r!   r"   share_memory_)r)   r+   r,   r"   r0   r0   r1   share_memoryN   s   

zAdagrad.share_memoryc           	      C   sh   d}|d D ]+}|j d ur1|j jrd}|| ||j  | j| }||d  ||d  q|S )NFr   Tr   r   )grad	is_sparseappendr"   )	r)   r+   params_with_gradgrads
state_sumsstate_stepshas_sparse_gradr,   r"   r0   r0   r1   _init_groupT   s   


zAdagrad._init_groupc           	      C   s   d}|durt   | }W d   n1 sw   Y  | jD ]1}g }g }g }g }| |||||}t|||||d |d |d |d ||d |d |d d	 q |S )
zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r   r   r   )r   r   r   r   rE   r   r   r   )r#   enable_gradr!   rF   r   )	r)   closurelossr+   rA   rB   rC   rD   rE   r0   r0   r1   r   b   s4   

zAdagrad.step)r   r   r   r   r   NN)__name__
__module____qualname__r   boolr    r2   r=   rF   r   r   __classcell__r0   r0   r.   r1   r      s,    

3a[  Implements Adagrad algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta)
                \text{ (objective)}, \: \lambda \text{ (weight decay)},                          \\
            &\hspace{12mm}    \tau \text{ (initial accumulator value)}, \: \eta\text{ (lr decay)}\\
            &\textbf{initialize} :  state\_sum_0 \leftarrow 0                             \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm} \tilde{\gamma}    \leftarrow \gamma / (1 +(t-1) \eta)                  \\
            &\hspace{5mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1}                             \\
            &\hspace{5mm}state\_sum_t  \leftarrow  state\_sum_{t-1} + g^2_t                      \\
            &\hspace{5mm}\theta_t \leftarrow
                \theta_{t-1}- \tilde{\gamma} \frac{g_t}{\sqrt{state\_sum_t}+\epsilon}            \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adaptive Subgradient Methods for Online Learning
    and Stochastic Optimization`_.
    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-2)
        lr_decay (float, optional): learning rate decay (default: 0)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-10)
        z	
        z

    .. _Adaptive Subgradient Methods for Online Learning and Stochastic
        Optimization: http://jmlr.org/papers/v12/duchi11a.html

    Fr   rB   rC   rD   rE   r   r   r   r   r   r   r   c                C   s   t dd |D std|du rt| |dd\}}|r%tj r%td|r/tj s/t}nt}|| ||||||	|
|||d dS )	ztFunctional API that performs Adagrad algorithm computation.

    See :class:`~torch.optim.Adagrad` for details.
    c                 s   s    | ]	}t |tjV  qd S rJ   )
isinstancer#   r   ).0tr0   r0   r1   	<genexpr>   s    zadagrad.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizersr   r   r   r   rE   r   r   )allRuntimeErrorr   r#   jitis_scripting_multi_tensor_adagrad_single_tensor_adagrad)r   rB   rC   rD   rE   r   r   r   r   r   r   r   _funcr0   r0   r1   r      s0   
c                 C   s8   |   }| dks| dkrt| S t|||S )Nr   )sizenumelr#   
empty_likesparse_coo_tensor)r>   grad_indicesr5   r^   r0   r0   r1   _make_sparse   s   
rc   c             	   C   sl  t | |||D ]\}}}}|d7 }t|}|	s|n| }|dkr.|jr'td|j||d}|d|d |   }|jrp| }| }| }|t	|||
d ||}|  |}|jt	|||| | d qt|}|rt|}t|}t|}|j||dd |
r| | }n| |}|j||| d |rt|}t|}qd S )Nr   r   z;weight_decay option is not compatible with sparse gradientsalpha   value)zipr   r?   rW   addcoalesce_indices_valuesadd_rc   powsparse_masksqrt_r#   r%   view_as_realaddcmul_sqrtaddcdiv_view_as_complex)r   rB   rC   rD   r   r   r   r   rE   r   r   paramr>   	state_sumstep_tr   clrrb   grad_valuesstd
std_valuesr%   r0   r0   r1   r[      sH   






r[   c                   sj  |
rJ dt | dkrd S t| |||g}| D ]\\}}}}}tdd |D }|r?t|||| ||dd|
d  S |	rFt|}dd	 |D }d
d	 |D }dd	 |D }t|d |dkrx|	rptj|||d ntj	|||d} fdd	|D }tj
|||dd t|}t|| |dks|	rt|| |}nt||}t||| qd S )Nz#_foreach ops don't support autogradr   c                 s   s    | ]}|j V  qd S rJ   )r?   )rQ   r>   r0   r0   r1   rS   D  s    z(_multi_tensor_adagrad.<locals>.<genexpr>TFrU   c                 S   $   g | ]}t |rt |n|qS r0   r#   r%   rr   rQ   xr0   r0   r1   
<listcomp>Y     $ z)_multi_tensor_adagrad.<locals>.<listcomp>c                 S   r~   r0   r   r   r0   r0   r1   r   Z  s    c                 S   r~   r0   r   r   r0   r0   r1   r   ]  r   r   rd   c                    s&   g | ]}  d t |d     qS )r   )r   )rQ   r   r   r   r0   r1   r   i  s   & rg   )r6   r   "_group_tensors_by_device_and_dtyper5   anyr[   r#   _foreach_neg_foreach_add__foreach_add_foreach_addcmul__foreach_sqrt_foreach_mul__foreach_mul_foreach_addcdiv_)r   rB   rC   rD   r   r   r   r   rE   r   r   grouped_tensorlistsdevice_paramsdevice_gradsdevice_state_sumsdevice_state_stepsr\   device_has_sparse_grad	minus_clrr|   	numeratorr0   r   r1   rZ   ,  sT   


rZ   )NNF)r#   r   	optimizerr   r   r   r   r   r	   r
   typingr   r   __all__r   __doc__rN   r8   r   rc   r[   rZ   r0   r0   r0   r1   <module>   s    $	
3	
5	

:	
