o
    hcl                  '   @   s  d dl Z d dl mZ ddlmZmZmZmZmZmZm	Z	m
Z
mZmZmZmZ d dlmZmZmZmZ d dlmZ ddgZG d	d deZd
de de
 de de	 de d e_						d*dee dee dee dee dee dee dee dededee dee dee dedededeeef ded ed!ef&d"dZdee dee dee dee dee dee dee dee dedededeeef ded ed!ededef"d#d$Zdee dee dee dee dee dee dee dee dedededeeef ded ed!ededef"d%d&Zdee dee dee dee dee dee dee dee dedededeeef ded ed!ededed'df$d(d)ZdS )+    N)Tensor   )	Optimizer_use_grad_for_differentiable
_get_value_dispatch_sqrt_stack_if_compiling_capturable_doc_differentiable_doc_foreach_doc
_fused_doc_maximize_doc_default_to_fused_or_foreachparams_t)ListOptionalTupleUnion)$_get_fused_kernels_supported_devicesAdamWadamwc                       s   e Zd Z					dddddddded	eeef d
eeef dedededede	e dedede	e f fddZ
 fddZdd ZedddZ  ZS )r   MbP?g?g+?:0yE>{Gz?FN)maximizeforeach
capturabledifferentiablefusedparamslrbetasepsweight_decayamsgradr   r   r   r   r   c                   s6  d|kst d| t|tr|r|	st dd|ks#t d| d|d   kr/dk s9n t d|d  d|d   krEdk sOn t d	|d  d|ksZt d
| t||||||||	|
|d
}t || |r|
rwtdd| _t  t	 fdd| j
D std  d|rtdd S d S )N        zInvalid learning rate: Elr as a Tensor is not supported for capturable=False and foreach=TruezInvalid epsilon value: r   g      ?z#Invalid beta parameter at index 0: r   z#Invalid beta parameter at index 1: zInvalid weight_decay value: )
r!   r"   r#   r$   r%   r   r   r   r   r   z)`fused` does not support `differentiable`Tc                 3   s4    | ]}|d  D ]}|j j v ot|V  qqdS )r    N)devicetypetorchis_floating_point).0pgpfused_supported_devices G/var/www/html/ai/venv/lib/python3.10/site-packages/torch/optim/adamw.py	<genexpr>?   s    z!AdamW.__init__.<locals>.<genexpr>zX`fused=True` requires all the params to be floating point Tensors of supported devices: .z0`fused` and `foreach` cannot be `True` together.)
ValueError
isinstancer   dictsuper__init__RuntimeError_step_supports_amp_scalingr   allparam_groups)selfr    r!   r"   r#   r$   r%   r   r   r   r   r   defaults	__class__r/   r2   r9      sP   
zAdamW.__init__c                    s   t  | | jD ]&}|dd |dd |dd  |dd |dd |dd  q	t| j }t|dkoEt	|d d	 }|sX|D ]}t
t|d	 |d	< qJd S d S )
Nr%   Fr   r   r   r   r   r   step)r8   __setstate__r=   
setdefaultliststatevalueslenr*   	is_tensortensorfloat)r>   rF   groupstate_valuesstep_is_tensorsr@   r1   r2   rC   I   s"   

zAdamW.__setstate__c	                 C   sL  |d D ]}	|	j d u rq||	 |	j jrtd||	j  | j|	 }
t|
dkrc|d s2|d r<tjdtj|	j	dnt
d|
d	< tj|	tjd
|
d< tj|	tjd
|
d< |rctj|	tjd
|
d< ||
d  ||
d  |d r|||
d  |d r|
d	 jrtd|d rt|d tr|d std||
d	  qd S )Nr    z'AdamW does not support sparse gradientsr   r   r   r1   )dtyper(   r&   rB   )memory_formatexp_avg
exp_avg_sqmax_exp_avg_sqr%   r   zB`requires_grad` is not supported for `step` in differentiable moder   r!   r'   )gradappend	is_sparser:   rF   rH   r*   zerosrK   r(   rJ   
zeros_likepreserve_formatrequires_gradr6   r   )r>   rL   params_with_gradgradsr%   exp_avgsexp_avg_sqsmax_exp_avg_sqsstate_stepsr.   rF   r1   r1   r2   _init_groupZ   sF   





zAdamW._init_groupc                 C   s   |    d}|dur!t  | }W d   n1 sw   Y  | jD ]U}g }g }g }g }g }g }	|d }
|d \}}| ||||
||||	 t||||||	f|
|||d |d |d |d |d |d	 |d
 |d t| ddt| ddd q$|S )zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr%   r"   r!   r$   r#   r   r   r   r   r   
grad_scale	found_inf)r%   beta1beta2r!   r$   r#   r   r   r   r   r   rc   rd   ) _cuda_graph_capture_health_checkr*   enable_gradr=   rb   r   getattr)r>   closurelossrL   r\   r]   r^   r_   r`   ra   r%   re   rf   r1   r1   r2   rB      s`   




z
AdamW.step)r   r   r   r   FN)__name__
__module____qualname__r   r   rK   r   r   boolr   r9   rC   rb   r   rB   __classcell__r1   r1   r@   r2   r      sN    	

	
<:a  Implements AdamW algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{(lr)}, \: \beta_1, \beta_2
                \text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)},
                \: \epsilon \text{ (epsilon)}                                                    \\
            &\hspace{13mm}      \lambda \text{(weight decay)},  \: \textit{amsgrad},
                \: \textit{maximize}                                                             \\
            &\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0
                \text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0              \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{10mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1}         \\
            &\hspace{5mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{5mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{5mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{5mm}\widehat{v_t} \leftarrow   v_t/\big(1-\beta_2^t \big)                   \\
            &\hspace{5mm}\textbf{if} \: amsgrad                                                  \\
            &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max},
                \widehat{v_t})                                                                   \\
            &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big)                                 \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}} + \epsilon \big)                                       \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Decoupled Weight Decay Regularization`_.
    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, Tensor, optional): learning rate (default: 1e-3). A tensor LR
            is not yet supported for all our implementations. Please use a float
            LR if you are not also specifying fused=True or capturable=True.
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay coefficient (default: 1e-2)
        amsgrad (bool, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False)
        z	
        z
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ

    Fr    r]   r^   r_   r`   ra   r   r   r   r   rc   rd   r%   re   rf   r!   r$   r#   r   c                C   s   t j stdd |D std|	du r.|du r.t| |dd\}}|r.t|tr.|s.d}|	du r4d}	|du r:d}|rEt j	 rEtd|	rPt j	 rPtd|	rZt j	 sZt
}n|rdt j	 sdt}nt}|| |||||||||||||||
|d	 dS )
zpFunctional API that performs AdamW algorithm computation.

    See :class:`~torch.optim.AdamW` for details.
    c                 s   s    | ]	}t |tjV  qd S rl   )r6   r*   r   )r,   tr1   r1   r2   r3   0  s    zadamw.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizersz4torch.jit.script not supported with fused optimizers)r%   re   rf   r!   r$   r#   r   r   r   rc   rd   )r*   _utilsis_compilingr<   r:   r   r6   r   jitis_scripting_fused_adamw_multi_tensor_adamw_single_tensor_adamw)r    r]   r^   r_   r`   ra   r   r   r   r   rc   rd   r%   re   rf   r!   r$   r#   r   _funcr1   r1   r2   r     sP   
c       	         C   s  |d u r|d u s
J t j rt|tsJ t| D ]-\}}|s%|| n||  }|| }|| }|| }t j sM|rM|jrC|jsM|j	rI|j	sMJ dt 
|rqt |}t |}t |}|rlt || ||< t |}|d7 }|d||   ||d|	  ||
j||d|
 d |s|r|}d|	|  }d|
|  }|| }| }| }|r|r||  }n|| }|| t || ||  ||  || }n| ||  || }||| nEt|}d|	|  }d|
|  }|| }t|}|r"t j|| ||| d ||  | |}n	| | |}|j||| d |rHt 
| | rHt || ||< qd S )NzGIf capturable=True, params and state_steps must be CUDA or XLA tensors.r   )value)out)r*   rv   rw   r6   rK   	enumeratert   ru   is_cudais_xla
is_complexview_as_realmul_lerp_addcmul_negsqrtclonecopy_maximumadd_addcdiv_r   r   view_as_complex)r    r]   r^   r_   r`   ra   rc   rd   r%   re   rf   r!   r$   r#   r   r   r   iparamrU   rR   rS   step_trB   bias_correction1bias_correction2	step_sizestep_size_negbias_correction2_sqrtrT   denomr1   r1   r2   rz   d  s~   







rz   c       	            s  t | dkrd S ttr|stdtj s*|r*tdd t| |D s*J d|r0J d|d u r8|d u s:J t	
| |||||g}| D ]\\}}}}}}}|r[t|}dd |D }d	d |D }d
d |D }dd |D }dd |D }t|d |dkrt|d|   t||d   t| t|||d  ~|rt |}t|}t|d t|d t| t| t| t| |}|}|rt|| t|}nt|}t|| t|| t|| t||| qI fdd|D }fdd|D }tfdd|D }dd |D }|r@t|| t|}nt|}t|| t|| t|||| qId S )Nr   r'   c                 s   s     | ]\}}|j o|j V  qd S rl   )r   )r,   r.   rB   r1   r1   r2   r3     s    
z&_multi_tensor_adamw.<locals>.<genexpr>z@If capturable=True, params and state_steps must be CUDA tensors.z#_foreach ops don't support autogradc                 S   $   g | ]}t |rt |n|qS r1   r*   r   r   r,   xr1   r1   r2   
<listcomp>
     $ z'_multi_tensor_adamw.<locals>.<listcomp>c                 S   r   r1   r   r   r1   r1   r2   r     r   c                 S   r   r1   r   r   r1   r1   r2   r         c                 S   r   r1   r   r   r1   r1   r2   r     r   c                 S   r   r1   r   r   r1   r1   r2   r     r   r   c                       g | ]
}d  t |  qS r   r   r,   rB   )re   r1   r2   r   I      c                    r   r   r   r   )rf   r1   r2   r   J  r   c                    s   g | ]} | d  qS )r1   r,   bc)r!   r1   r2   r   L  s    c                 S   s   g | ]}t |qS r1   )r   r   r1   r1   r2   r   N  s    )rH   r6   r   r:   r*   rt   ru   r<   zipr   "_group_tensors_by_device_and_dtyperG   _foreach_neg_foreach_add__foreach_mul__foreach_lerp__foreach_addcmul__foreach_pow_foreach_sub__foreach_neg__foreach_div__foreach_reciprocal__foreach_sqrt__foreach_maximum__foreach_sqrt_foreach_addcdiv_r   )r    r]   r^   r_   r`   ra   rc   rd   r%   re   rf   r!   r$   r#   r   r   r   grouped_tensorsdevice_paramsdevice_gradsdevice_exp_avgsdevice_exp_avg_sqsdevice_max_exp_avg_sqsdevice_state_stepsr{   r   r   r   r   exp_avg_sq_sqrtr1   )re   rf   r!   r2   ry     s   
	






ry   returnc       	         C   s~  | sd S |r
t d|d ur|j|ind }|d ur|j|ind }t|tr1t|jdkr1|j|ind }t| |||||g}| D ]z\\}}\\}}}}}}}d\}}|d uri||vre|j|dd||< || }|d ur~||vrz|j|dd||< || }|d ur||vr|j|dd||< || }t	
|d t	j|||||||||	|
|||||d |d urt	||gt|  qBd S )	Nz9Adam with fused=True does not support differentiable=Truecpu)NNT)non_blocking)r(   r   r   )	r%   r!   re   rf   r$   r#   r   rc   rd   )r:   r(   r6   r   strr   r   itemstor*   r   _fused_adamw_r   rH   )r    r]   r^   r_   r`   ra   rc   rd   r%   re   rf   r!   r$   r#   r   r   r   grad_scale_dictfound_inf_dictlr_dictr   r(   r{   r   r   r   r   r   r   device_grad_scaledevice_found_infr1   r1   r2   rx   ^  sf   &rx   )NFFNNN)r*   r   	optimizerr   r   r   r   r   r	   r
   r   r   r   r   r   typingr   r   r   r   torch.utils._foreach_utilsr   __all__r   __doc__rp   rK   r   rz   ry   rx   r1   r1   r1   r2   <module>   s\   8 F&K	


Q


u


 

