o
    h@                     @   s   d Z ddlZddlmZmZmZmZ ddlZzddl	m
Z
 W n ey-   ddlm
Z
 Y nw G dd dejjjjZ					
					ddedededededededee dee dededeee  fddZG dd de
ZG dd deZdS )z?Functions and classes related to optimization (weight updates).    N)CallableListOptionalUnion)Adamc                       sL   e Zd ZdZ		ddededededef
 fd	d
Zdd Z	dd Z
  ZS )WarmUpa  
    Applies a warmup schedule on a given learning rate decay schedule.

    Args:
        initial_learning_rate (`float`):
            The initial learning rate for the schedule after the warmup (so this will be the learning rate at the end
            of the warmup).
        decay_schedule_fn (`Callable`):
            The schedule function to apply after the warmup for the rest of training.
        warmup_steps (`int`):
            The number of steps for the warmup part of training.
        power (`float`, *optional*, defaults to 1.0):
            The power to use for the polynomial warmup (defaults is a linear warmup).
        name (`str`, *optional*):
            Optional name prefix for the returned tensors during the schedule.
          ?Ninitial_learning_ratedecay_schedule_fnwarmup_stepspowernamec                    s,   t    || _|| _|| _|| _|| _d S N)super__init__r	   r   r   r
   r   )selfr	   r
   r   r   r   	__class__ R/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/optimization_tf.pyr   0   s   

zWarmUp.__init__c                    s   t  jpd:}t t j}t  jt j}|| } jt j| j	 t j
||k fdd fdd|dW  d    S 1 sEw   Y  d S )Nr   c                      s    S r   r   r   )warmup_learning_rater   r   <lambda>I   s    z!WarmUp.__call__.<locals>.<lambda>c                      s      j S r   )r
   r   r   )r   stepr   r   r   J   s    r   )tf
name_scoper   castfloat32r   r	   mathpowr   cond)r   r   r   global_step_floatwarmup_steps_floatwarmup_percent_doner   )r   r   r   r   __call__?   s   
$zWarmUp.__call__c                 C   s   | j | j| j| j| jdS )Nr	   r
   r   r   r   r%   r   r   r   r   
get_configN   s   zWarmUp.get_config)r   N)__name__
__module____qualname____doc__floatr   intstrr   r$   r'   __classcell__r   r   r   r   r      s"    r           ?+?:0yE>r   init_lrnum_train_stepsnum_warmup_stepsmin_lr_ratio
adam_beta1
adam_beta2adam_epsilonadam_clipnormadam_global_clipnormweight_decay_rater   include_in_weight_decayc                 C   s   t jjjj| || | | |
d}|rt| ||d}|	dkr0t||	|||||g d|d	}||fS t jjj||||||d}||fS )a  
    Creates an optimizer with a learning rate schedule using a warmup phase followed by a linear decay.

    Args:
        init_lr (`float`):
            The desired learning rate at the end of the warmup phase.
        num_train_steps (`int`):
            The total number of training steps.
        num_warmup_steps (`int`):
            The number of warmup steps.
        min_lr_ratio (`float`, *optional*, defaults to 0):
            The final learning rate at the end of the linear decay will be `init_lr * min_lr_ratio`.
        adam_beta1 (`float`, *optional*, defaults to 0.9):
            The beta1 to use in Adam.
        adam_beta2 (`float`, *optional*, defaults to 0.999):
            The beta2 to use in Adam.
        adam_epsilon (`float`, *optional*, defaults to 1e-8):
            The epsilon to use in Adam.
        adam_clipnorm (`float`, *optional*, defaults to `None`):
            If not `None`, clip the gradient norm for each weight tensor to this value.
        adam_global_clipnorm (`float`, *optional*, defaults to `None`)
            If not `None`, clip gradient norm to this value. When using this argument, the norm is computed over all
            weight tensors, as if they were concatenated into a single vector.
        weight_decay_rate (`float`, *optional*, defaults to 0):
            The weight decay to use.
        power (`float`, *optional*, defaults to 1.0):
            The power to use for PolynomialDecay.
        include_in_weight_decay (`List[str]`, *optional*):
            List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is
            applied to all parameters except bias and layer norm parameters.
    )r	   decay_stepsend_learning_rater   )r	   r
   r   r0   )	LayerNorm
layer_normbias)	learning_rater=   beta_1beta_2epsilonclipnormglobal_clipnormexclude_from_weight_decayr>   )rD   rE   rF   rG   rH   rI   )r   keras
optimizers	schedulesPolynomialDecayr   AdamWeightDecayr   )r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r   r>   lr_schedule	optimizerr   r   r   create_optimizerX   sD   
.
rR   c                       s   e Zd ZdZ									 d&d	eeejjj	j
f d
edededededeee  deee  def fddZe fddZ fddZdd Zd' fdd	Zdd Zd' fdd	Zd' fd d!	Z fd"d#Zd$d% Z  ZS )(rO   a{
  
    Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the
    loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact
    with the m and v parameters in strange ways as shown in [Decoupled Weight Decay
    Regularization](https://arxiv.org/abs/1711.05101).

    Instead we want to decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent
    to adding the square of the weights to the loss with plain (non-momentum) SGD.

    Args:
        learning_rate (`Union[float, tf.keras.optimizers.schedules.LearningRateSchedule]`, *optional*, defaults to 0.001):
            The learning rate to use or a schedule.
        beta_1 (`float`, *optional*, defaults to 0.9):
            The beta1 parameter in Adam, which is the exponential decay rate for the 1st momentum estimates.
        beta_2 (`float`, *optional*, defaults to 0.999):
            The beta2 parameter in Adam, which is the exponential decay rate for the 2nd momentum estimates.
        epsilon (`float`, *optional*, defaults to 1e-07):
            The epsilon parameter in Adam, which is a small constant for numerical stability.
        amsgrad (`bool`, *optional*, defaults to `False`):
            Whether to apply AMSGrad variant of this algorithm or not, see [On the Convergence of Adam and
            Beyond](https://arxiv.org/abs/1904.09237).
        weight_decay_rate (`float`, *optional*, defaults to 0.0):
            The weight decay to apply.
        include_in_weight_decay (`List[str]`, *optional*):
            List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is
            applied to all parameters by default (unless they are in `exclude_from_weight_decay`).
        exclude_from_weight_decay (`List[str]`, *optional*):
            List of the parameter names (or re patterns) to exclude from applying weight decay to. If a
            `include_in_weight_decay` is passed, the names in it will supersede this list.
        name (`str`, *optional*, defaults to `"AdamWeightDecay"`):
            Optional name for the operations created when applying gradients.
        kwargs (`Dict[str, Any]`, *optional*):
            Keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by
            norm; `clipvalue` is clip gradients by value, `decay` is included for backward compatibility to allow time
            inverse decay of learning rate. `lr` is included for backward compatibility, recommended to use
            `learning_rate` instead.
    MbP?r1   r2   Hz>Fr0   NrD   rE   rF   rG   amsgradr=   r>   rJ   r   c
                    s4   t  j||||||	fi |
 || _|| _|| _d S r   )r   r   r=   _include_in_weight_decay_exclude_from_weight_decay)r   rD   rE   rF   rG   rU   r=   r>   rJ   r   kwargsr   r   r   r      s   
zAdamWeightDecay.__init__c                    s   dt i}tt| j||dS )z?Creates an optimizer from its config with WarmUp custom object.r   )custom_objects)r   r   rO   from_config)clsconfigrY   r   r   r   rZ      s   zAdamWeightDecay.from_configc                    s4   t t| ||| tj| jdd|||f d< d S )Nadam_weight_decay_rater   r=   )r   rO   _prepare_localr   constantr=   )r   
var_device	var_dtypeapply_stater   r   r   r^      s   zAdamWeightDecay._prepare_localc                 C   sB   |  |j}|r|j|| ||j|jjf d  | jdS t S )Nr=   )use_locking)	_do_use_weight_decayr   
assign_subdevicedtype
base_dtype_use_lockingr   no_op)r   varrD   rb   do_decayr   r   r   _decay_weights_op   s   z!AdamWeightDecay._decay_weights_opc                    s2   t t| \}}tt| jt||fd|i|S )Nr   )listzipr   rO   apply_gradients)r   grads_and_varsr   rX   gradstvarsr   r   r   rp      s   "zAdamWeightDecay.apply_gradientsc                 C   s\   |du r| j | i fS |pi }|||f}|du r&| ||}||||f< |d d|ifS )z1Retrieves the learning rate with the given state.Nlr_trb   )_decayed_lr_tget_fallback_apply_state)r   r`   ra   rb   coefficientsr   r   r   _get_lr   s   zAdamWeightDecay._get_lrc                    sp   |  |j|jj|\}}| |||}t|g tt| j	||fi |W  d    S 1 s1w   Y  d S r   )
ry   rf   rg   rh   rm   r   control_dependenciesr   rO   _resource_apply_dense)r   gradrk   rb   rt   rX   decayr   r   r   r{     s
   $z%AdamWeightDecay._resource_apply_densec                    sr   |  |j|jj|\}}| |||}t|g tt| j	|||fi |W  d    S 1 s2w   Y  d S r   )
ry   rf   rg   rh   rm   r   rz   r   rO   _resource_apply_sparse)r   r|   rk   indicesrb   rt   rX   r}   r   r   r   r~     s
   $z&AdamWeightDecay._resource_apply_sparsec                    s   t   }|d| ji |S )Nr=   )r   r'   updater=   )r   r\   r   r   r   r'     s   
zAdamWeightDecay.get_configc                 C   sb   | j dkrdS | jr| jD ]}t||dur dS q| jr/| jD ]}t||dur. dS q!dS )z0Whether to use L2 weight decay for `param_name`.r   FNT)r=   rV   researchrW   )r   
param_namerr   r   r   rd     s   


z$AdamWeightDecay._do_use_weight_decay)	rS   r1   r2   rT   Fr0   NNrO   r   )r(   r)   r*   r+   r   r,   r   rK   rL   rM   LearningRateScheduleboolr   r   r.   r   classmethodrZ   r^   rm   rp   ry   r{   r~   r'   rd   r/   r   r   r   r   rO      sP    (

	
	rO   c                   @   s@   e Zd ZdZdd Zedd Zedd Zdd	 Zd
d Z	dS )GradientAccumulatoraR  
    Gradient accumulation utility. When used with a distribution strategy, the accumulator should be called in a
    replica context. Gradients will be accumulated locally on each replica and without synchronization. Users should
    then call `.gradients`, scale the gradients if required, and pass the result to `apply_gradients`.
    c                 C   s   g | _ d| _dS )zInitializes the accumulator.N)
_gradients_accum_stepsr&   r   r   r   r   9  s   
zGradientAccumulator.__init__c                 C   s<   | j du rtjtjdtjddtjjtjjd| _ | j 	 S )zNumber of accumulated steps.Nr   )rg   F	trainablesynchronizationaggregation)
r   r   Variabler_   int64VariableSynchronizationON_READVariableAggregationONLY_FIRST_REPLICAvaluer&   r   r   r   r   >  s   

zGradientAccumulator.stepc                 C   s   | j stddd | j D S )z1The accumulated gradients on the current replica.zBThe accumulator should be called first to initialize the gradientsc                 S   s    g | ]}|d ur|  n|qS r   )r   .0gradientr   r   r   
<listcomp>P  s     z1GradientAccumulator.gradients.<locals>.<listcomp>)r   
ValueErrorr&   r   r   r   	gradientsK  s   zGradientAccumulator.gradientsc                 C   s   | j s| j}| j dd |D  t|t| j kr)tdt| j  dt| t| j |D ]\}}|dur@|dur@|| q/| jd dS )z/Accumulates `gradients` on the current replica.c                 S   s8   g | ]}|d urt jt |dt jjt jjdn|qS )NFr   )r   r   
zeros_liker   r   r   r   r   r   r   r   r   W  s    	z0GradientAccumulator.__call__.<locals>.<listcomp>z	Expected z gradients, but got N   )r   r   extendlenr   ro   
assign_addr   )r   r   _accum_gradientr   r   r   r   r$   R  s   	
zGradientAccumulator.__call__c                 C   s>   | j sdS | jd | j D ]}|dur|t| qdS )z8Resets the accumulated gradients on the current replica.Nr   )r   r   assignr   r   )r   r   r   r   r   resetl  s   
zGradientAccumulator.resetN)
r(   r)   r*   r+   r   propertyr   r   r$   r   r   r   r   r   r   .  s    


r   )	r0   r1   r2   r3   NNr0   r   N)r+   r   typingr   r   r   r   
tensorflowr   "tensorflow.keras.optimizers.legacyr   ImportErrortensorflow.keras.optimizersrK   rL   rM   r   r   r,   r-   r.   rR   rO   objectr   r   r   r   r   <module>   s^   >	


T 