o
    h#                     @   s^   d dl mZ d dlmZmZ erddlmZ G dd dZG dd deZG d	d
 d
eZ	dS )    )Queue)TYPE_CHECKINGOptional   )AutoTokenizerc                   @   s    e Zd ZdZdd Zdd ZdS )BaseStreamerzG
    Base class from which `.generate()` streamers should inherit.
    c                 C      t  )z;Function that is called by `.generate()` to push new tokensNotImplementedErrorselfvalue r   W/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/generation/streamers.pyput      zBaseStreamer.putc                 C   r   )zHFunction that is called by `.generate()` to signal the end of generationr	   r   r   r   r   end!   r   zBaseStreamer.endN)__name__
__module____qualname____doc__r   r   r   r   r   r   r      s    r   c                   @   sP   e Zd ZdZddddefddZdd	 Zd
d ZddedefddZ	dd Z
dS )TextStreamera  
    Simple text streamer that prints the token(s) to stdout as soon as entire words are formed.

    <Tip warning={true}>

    The API for the streamer classes is still under development and may change in the future.

    </Tip>

    Parameters:
        tokenizer (`AutoTokenizer`):
            The tokenized used to decode the tokens.
        skip_prompt (`bool`, *optional*, defaults to `False`):
            Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots.
        decode_kwargs (`dict`, *optional*):
            Additional keyword arguments to pass to the tokenizer's `decode` method.

    Examples:

        ```python
        >>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

        >>> tok = AutoTokenizer.from_pretrained("gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
        >>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")
        >>> streamer = TextStreamer(tok)

        >>> # Despite returning the usual output, the streamer will also print the generated text to stdout.
        >>> _ = model.generate(**inputs, streamer=streamer, max_new_tokens=20)
        An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,
        ```
    F	tokenizerr   skip_promptc                 K   s(   || _ || _|| _g | _d| _d| _d S )Nr   T)r   r   decode_kwargstoken_cache	print_lennext_tokens_are_prompt)r   r   r   r   r   r   r   __init__H   s   
zTextStreamer.__init__c                 C   s  t |jdkr|jd dkrtdt |jdkr|d }| jr(| jr(d| _dS | j|  | jj	| jfi | j
}|drO|| jd }g | _d| _n5t |dkro| t|d ro|| jd }|  jt |7  _n|| j|dd  }|  jt |7  _| | dS )	zm
        Receives tokens, decodes them, and prints them to stdout as soon as they form entire words.
           r   z'TextStreamer only supports batch size 1FN
 )lenshape
ValueErrorr   r   r   extendtolistr   decoder   endswithr   _is_chinese_charordrfindon_finalized_text)r   r   textprintable_textr   r   r   r   R   s&   
zTextStreamer.putc                 C   s^   t | jdkr!| jj| jfi | j}|| jd }g | _d| _nd}d| _| j|dd dS )z;Flushes any remaining cache and prints a newline to stdout.r   N T)
stream_end)r$   r   r   r)   r   r   r   r.   )r   r/   r0   r   r   r   r   t   s   zTextStreamer.endr/   r2   c                 C   s   t |d|sdndd dS )zNPrints the new text to stdout. If the stream is ending, also prints a newline.Tr1   N)flushr   )printr   r/   r2   r   r   r   r.      s   zTextStreamer.on_finalized_textc                 C   s   |dkr|dks@|dkr|dks@|dkr|dks@|dkr |dks@|d	kr(|d
ks@|dkr0|dks@|dkr8|dks@|dkrB|dkrBdS dS )z6Checks whether CP is the codepoint of a CJK character.i N  i  i 4  iM  i   iߦ i  i? i@ i i  i i   i  i  i TFr   )r   cpr   r   r   r+      s   zTextStreamer._is_chinese_charNF)r   r   r   r   boolr   r   r   strr.   r+   r   r   r   r   r   &   s    !
"r   c                       sZ   e Zd ZdZ	ddddedee f fdd	Zdd
edefddZ	dd Z
dd Z  ZS )TextIteratorStreamera  
    Streamer that stores print-ready text in a queue, to be used by a downstream application as an iterator. This is
    useful for applications that benefit from acessing the generated text in a non-blocking way (e.g. in an interactive
    Gradio demo).

    <Tip warning={true}>

    The API for the streamer classes is still under development and may change in the future.

    </Tip>

    Parameters:
        tokenizer (`AutoTokenizer`):
            The tokenized used to decode the tokens.
        skip_prompt (`bool`, *optional*, defaults to `False`):
            Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots.
        timeout (`float`, *optional*):
            The timeout for the text queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
            in `.generate()`, when it is called in a separate thread.
        decode_kwargs (`dict`, *optional*):
            Additional keyword arguments to pass to the tokenizer's `decode` method.

    Examples:

        ```python
        >>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
        >>> from threading import Thread

        >>> tok = AutoTokenizer.from_pretrained("gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
        >>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")
        >>> streamer = TextIteratorStreamer(tok)

        >>> # Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
        >>> generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=20)
        >>> thread = Thread(target=model.generate, kwargs=generation_kwargs)
        >>> thread.start()
        >>> generated_text = ""
        >>> for new_text in streamer:
        ...     generated_text += new_text
        >>> generated_text
        'An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,'
        ```
    FNr   r   r   timeoutc                    s.   t  j||fi | t | _d | _|| _d S N)superr   r   
text_queuestop_signalr;   )r   r   r   r;   r   	__class__r   r   r      s   
zTextIteratorStreamer.__init__r/   r2   c                 C   s2   | j j|| jd |r| j j| j| jd dS dS )z\Put the new text in the queue. If the stream is ending, also put a stop signal in the queue.r;   N)r>   r   r;   r?   r5   r   r   r   r.      s   z&TextIteratorStreamer.on_finalized_textc                 C   s   | S r<   r   r   r   r   r   __iter__   s   zTextIteratorStreamer.__iter__c                 C   s$   | j j| jd}|| jkrt |S )NrB   )r>   getr;   r?   StopIterationr   r   r   r   __next__   s   
zTextIteratorStreamer.__next__)FNr7   )r   r   r   r   r8   r   floatr   r9   r.   rC   rF   __classcell__r   r   r@   r   r:      s    .r:   N)
queuer   typingr   r   models.autor   r   r   r:   r   r   r   r   <module>   s   y