o
    hH                     @   s0   d Z ddlmZ ddlmZ G dd deZdS )z&
Image/Text processor class for ALIGN
   )ProcessorMixin)BatchEncodingc                       sV   e Zd ZdZddgZdZdZ fddZdddZdd Z	dd Z
edd Z  ZS )AlignProcessora(  
    Constructs an ALIGN processor which wraps [`EfficientNetImageProcessor`] and
    [`BertTokenizer`]/[`BertTokenizerFast`] into a single processor that interits both the image processor and
    tokenizer functionalities. See the [`~AlignProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
    information.

    Args:
        image_processor ([`EfficientNetImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`BertTokenizer`, `BertTokenizerFast`]):
            The tokenizer is a required input.
    image_processor	tokenizerEfficientNetImageProcessor)BertTokenizerBertTokenizerFastc                    s   t  || d S N)super__init__)selfr   r   	__class__ `/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/align/processing_align.pyr   *   s   zAlignProcessor.__init__N
max_length@   c           	      K   s   |du r|du rt d|dur| j|f|||d|}|dur,| j|fd|i|}|dur;|dur;|j|d< |S |durA|S ttdi ||dS )a
  
        Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
        and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
        EfficientNetImageProcessor's [`~EfficientNetImageProcessor.__call__`] if `images` is not `None`. Please refer
        to the doctsring of the above two methods for more information.

        Args:
            text (`str`, `List[str]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `max_length`):
                Activates and controls padding for tokenization of input text. Choose between [`True` or `'longest'`,
                `'max_length'`, `False` or `'do_not_pad'`]
            max_length (`int`, *optional*, defaults to `max_length`):
                Maximum padding value to use to pad the input text during tokenization.

            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz?You have to specify either text or images. Both cannot be none.)paddingr   return_tensorsr   pixel_values)datatensor_typer   )
ValueErrorr   r   r   r   dict)	r   textimagesr   r   r   kwargsencodingimage_featuresr   r   r   __call__-   s$   (
zAlignProcessor.__call__c                 O      | j j|i |S )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r   batch_decoder   argsr   r   r   r   r"   h      zAlignProcessor.batch_decodec                 O   r!   )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r   decoder#   r   r   r   r&   o   r%   zAlignProcessor.decodec                 C   s"   | j j}| jj}tt|| S r
   )r   model_input_namesr   listr   fromkeys)r   tokenizer_input_namesimage_processor_input_namesr   r   r   r'   v   s   z AlignProcessor.model_input_names)NNr   r   N)__name__
__module____qualname____doc__
attributesimage_processor_classtokenizer_classr   r    r"   r&   propertyr'   __classcell__r   r   r   r   r      s    
;r   N)r/   processing_utilsr   tokenization_utils_baser   r   r   r   r   r   <module>   s   