o
    h2                     @   s   d Z ddlZddlmZmZmZ ddlmZ ddlm	Z	m
Z
 ddlmZ e
eZd	d
dZdZG dd deZe	ejddddG dd deZe	ejddddG dd deZe	ejddddG dd deZG dd deZdS )z BARK model configuration    N)DictOptionalUnion   )PretrainedConfig)add_start_docstringslogging   )CONFIG_MAPPINGz?https://huggingface.co/suno/bark-small/resolve/main/config.jsonz9https://huggingface.co/suno/bark/resolve/main/config.json)zsuno/bark-smallz	suno/barka
  
    This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        block_size (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        input_vocab_size (`int`, *optional*, defaults to 10_048):
            Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with
            regards to the chosen sub-model.
        output_vocab_size (`int`, *optional*, defaults to 10_048):
            Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented
            by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought
            with regards to the chosen sub-model.
        num_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the given sub-model.
        num_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer architecture.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the linear layers and layer norm layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
c                       s   e Zd ZdZdgZdddddZ						
	
					d fdd	Ze					ddee	e
jf deee	e
jf  dededeee	ef  de	ddfddZ  ZS ) BarkSubModelConfigbark_modulepast_key_values	num_heads
num_layersinput_vocab_size
block_size)num_attention_headsnum_hidden_layers
vocab_sizewindow_size   @'                T{Gz?c                    sR   || _ || _|| _|| _|| _|| _|| _|| _|
| _|	| _	t
 jdi | d S )N )r   r   output_vocab_sizer   r   hidden_sizedropoutbias	use_cacheinitializer_rangesuper__init__)selfr   r   r   r   r   r   r   r    r"   r!   kwargs	__class__r   a/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/bark/configuration_bark.pyr$   R   s   zBarkSubModelConfig.__init__NFmainpretrained_model_name_or_path	cache_dirforce_downloadlocal_files_onlytokenrevisionreturnr   c           	      K   s   ||d< ||d< ||d< ||d< |  || | j|fi |\}}|ddkr0|| j d }d|v rOt| drO|d | jkrOtd|d  d	| j d
 | j|fi |S )Nr,   r-   r.   r0   
model_typebark_configzYou are using a model of type z  to instantiate a model of type zN. This is not supported for all configurations of models and can yield errors.)_set_token_in_kwargsget_config_dictgetr2   hasattrloggerwarning	from_dict)	clsr+   r,   r-   r.   r/   r0   r&   config_dictr   r   r)   from_pretrainedm   s    z"BarkSubModelConfig.from_pretrained)
r   r   r   r   r   r   r   Tr   T)NFFNr*   )__name__
__module____qualname__r2   keys_to_ignore_at_inferenceattribute_mapr$   classmethodr   strosPathLiker   boolr>   __classcell__r   r   r'   r)   r   G   sP    		r   BarkSemanticConfigBarkSemanticModel)configmodela  
    Example:

    ```python
    >>> from transformers import BarkSemanticConfig, BarkSemanticModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkSemanticConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkSemanticModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                   @      e Zd ZdZdS )rJ   semanticNr?   r@   rA   r2   r   r   r   r)   rJ          BarkCoarseConfigBarkCoarseModela  
    Example:

    ```python
    >>> from transformers import BarkCoarseConfig, BarkCoarseModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkCoarseConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkCoarseModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                   @   rN   )rR   coarse_acousticsNrP   r   r   r   r)   rR      rQ   BarkFineConfigBarkFineModela   
        n_codes_total (`int`, *optional*, defaults to 8):
            The total number of audio codebooks predicted. Used in the fine acoustics sub-model.
        n_codes_given (`int`, *optional*, defaults to 1):
            The number of audio codebooks predicted in the coarse acoustics sub-model. Used in the acoustics
            sub-models.
    Example:

    ```python
    >>> from transformers import BarkFineConfig, BarkFineModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkFineConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkFineModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                       s"   e Zd ZdZd fdd	Z  ZS )rU   fine_acousticsT      c                    s&   || _ || _t jdd|i| d S )Ntie_word_embeddingsr   )n_codes_totaln_codes_givenr#   r$   )r%   rZ   r[   r\   r&   r'   r   r)   r$      s   zBarkFineConfig.__init__)TrX   rY   )r?   r@   rA   r2   r$   rI   r   r   r'   r)   rU      s    c                	       s`   e Zd ZdZdZ					ddedededef fd	d
Zedede	de
defddZ  ZS )
BarkConfiga  
    This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark
    model according to the specified sub-models configurations, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark
    [suno/bark](https://huggingface.co/suno/bark) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
    semantic_config ([`BarkSemanticConfig`], *optional*):
        Configuration of the underlying semantic sub-model.
    coarse_acoustics_config ([`BarkCoarseConfig`], *optional*):
        Configuration of the underlying coarse acoustics sub-model.
    fine_acoustics_config ([`BarkFineConfig`], *optional*):
        Configuration of the underlying fine acoustics sub-model.
    codec_config ([`AutoConfig`], *optional*):
        Configuration of the underlying codec sub-model.

    Example:

    ```python
    >>> from transformers import (
    ...     BarkSemanticConfig,
    ...     BarkCoarseConfig,
    ...     BarkFineConfig,
    ...     BarkModel,
    ...     BarkConfig,
    ...     AutoConfig,
    ... )

    >>> # Initializing Bark sub-modules configurations.
    >>> semantic_config = BarkSemanticConfig()
    >>> coarse_acoustics_config = BarkCoarseConfig()
    >>> fine_acoustics_config = BarkFineConfig()
    >>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz")


    >>> # Initializing a Bark module style configuration
    >>> configuration = BarkConfig.from_sub_model_configs(
    ...     semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config
    ... )

    >>> # Initializing a model (with random weights)
    >>> model = BarkModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    r3   Nr   semantic_configcoarse_acoustics_configfine_acoustics_configcodec_configc                    s   |d u ri }t d |d u ri }t d |d u r!i }t d |d u r,i }t d tdi || _tdi || _tdi || _d|v rL|d nd}t| di || _	|| _
t jdi | d S )NzMsemantic_config is None. initializing the semantic model with default values.zScoarse_acoustics_config is None. initializing the coarse model with default values.zOfine_acoustics_config is None. initializing the fine model with default values.zGcodec_config is None. initializing the codec model with default values.r2   encodecr   )r9   inforJ   r^   rR   r_   rU   r`   r
   ra   r"   r#   r$   )r%   r^   r_   r`   ra   r"   r&   codec_model_typer'   r   r)   r$     s&   	



zBarkConfig.__init__c                 K   s(   | d|  |  |  |  d|S )z
        Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration.

        Returns:
            [`BarkConfig`]: An instance of a configuration object
        )r^   r_   r`   ra   Nr   )to_dict)r<   r^   r_   r`   ra   r&   r   r   r)   from_sub_model_configs5  s   z!BarkConfig.from_sub_model_configs)NNNNr   )r?   r@   rA   __doc__r2   r   r$   rD   rJ   rR   rU   r   rf   rI   r   r   r'   r)   r]      s6    4#r]   )rg   rF   typingr   r   r   configuration_utilsr   utilsr   r   autor
   
get_loggerr?   r9   "BARK_PRETRAINED_CONFIG_ARCHIVE_MAP#BARK_SUBMODELCONFIG_START_DOCSTRINGr   formatrJ   rR   rU   r]   r   r   r   r)   <module>   s8   
&G
