o
    h'                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
eZi dd	d
dddddddddddddddddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-d.d/ZG d0d1 d1eZG d2d3 d3eZd4S )5z BERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingzbert-base-uncasedzAhttps://huggingface.co/bert-base-uncased/resolve/main/config.jsonzbert-large-uncasedzBhttps://huggingface.co/bert-large-uncased/resolve/main/config.jsonzbert-base-casedz?https://huggingface.co/bert-base-cased/resolve/main/config.jsonzbert-large-casedz@https://huggingface.co/bert-large-cased/resolve/main/config.jsonzbert-base-multilingual-uncasedzNhttps://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.jsonzbert-base-multilingual-casedzLhttps://huggingface.co/bert-base-multilingual-cased/resolve/main/config.jsonzbert-base-chinesezAhttps://huggingface.co/bert-base-chinese/resolve/main/config.jsonzbert-base-german-casedzFhttps://huggingface.co/bert-base-german-cased/resolve/main/config.jsonz%bert-large-uncased-whole-word-maskingzUhttps://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.jsonz#bert-large-cased-whole-word-maskingzShttps://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.jsonz5bert-large-uncased-whole-word-masking-finetuned-squadzehttps://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.jsonz3bert-large-cased-whole-word-masking-finetuned-squadzchttps://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.jsonzbert-base-cased-finetuned-mrpczNhttps://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.jsonzbert-base-german-dbmdz-casedzLhttps://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.jsonzbert-base-german-dbmdz-uncasedzNhttps://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.jsonzcl-tohoku/bert-base-japanesezLhttps://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.jsonz/cl-tohoku/bert-base-japanese-whole-word-maskingz_https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.jsonzQhttps://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.jsonzdhttps://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.jsonzShttps://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.jsonzUhttps://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.jsonzNhttps://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json)z!cl-tohoku/bert-base-japanese-charz4cl-tohoku/bert-base-japanese-char-whole-word-maskingz#TurkuNLP/bert-base-finnish-cased-v1z%TurkuNLP/bert-base-finnish-uncased-v1zwietsedv/bert-base-dutch-casedc                       sF   e Zd ZdZdZ											
						d fdd	Z  ZS )
BertConfiga  
    This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to
    instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the BERT
    [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        is_decoder (`bool`, *optional*, defaults to `False`):
            Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.

    Examples:

    ```python
    >>> from transformers import BertConfig, BertModel

    >>> # Initializing a BERT bert-base-uncased style configuration
    >>> configuration = BertConfig()

    >>> # Initializing a model (with random weights) from the bert-base-uncased style configuration
    >>> model = BertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```bert:w           gelu皙?      {Gz?-q=r   absoluteTNc                    st   t  jdd|i| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _d S )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsposition_embedding_type	use_cacheclassifier_dropout)selfr   r   r   r   r   r   r   r    r!   r"   r#   r$   r   r%   r&   r'   kwargs	__class__r   a/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/bert/configuration_bert.pyr      s    
zBertConfig.__init__)r
   r   r   r   r   r   r   r   r   r   r   r   r   r   TN)__name__
__module____qualname____doc__
model_typer   __classcell__r   r   r*   r,   r   H   s(    Cr   c                   @   s.   e Zd Zedeeeeef f fddZdS )BertOnnxConfigreturnc                 C   s<   | j dkrdddd}nddd}td|fd|fd	|fgS )
Nzmultiple-choicebatchchoicesequence)r      r   )r   r8   	input_idsattention_masktoken_type_ids)taskr   )r(   dynamic_axisr   r   r,   inputs   s   

zBertOnnxConfig.inputsN)r-   r.   r/   propertyr   strintr>   r   r   r   r,   r3      s    $r3   N)r0   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr-   logger"BERT_PRETRAINED_CONFIG_ARCHIVE_MAPr   r3   r   r   r   r,   <module>   sn   
	-m