o
    hR                     @   s   d Z ddlZddlmZ ddlmZmZmZmZm	Z	 er(ddl
mZ ddlmZ ddlmZ dd	lmZ dd
lmZ eeZddiZG dd deZG dd deZG dd deZG dd deZdS )z CLIP model configuration    NOrderedDict)TYPE_CHECKINGAnyMappingOptionalUnion   )ProcessorMixin)
TensorType)PretrainedConfig)
OnnxConfig)loggingzopenai/clip-vit-base-patch32zLhttps://huggingface.co/openai/clip-vit-base-patch32/resolve/main/config.jsonc                       sd   e Zd ZdZdZ										
						d fdd	Zedeee	j
f ddfddZ  ZS )CLIPTextConfiga  
    This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP
    text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the text encoder of the CLIP
    [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`CLIPModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        projection_dim (`int`, *optional*, defaults to 512):
            Dimentionality of text and vision projection layers.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 77):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 49406):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 49407):
            End of stream token id.

    Example:

    ```python
    >>> from transformers import CLIPTextConfig, CLIPTextModel

    >>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
    >>> configuration = CLIPTextConfig()

    >>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
    >>> model = CLIPTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```clip_text_model               M   
quick_geluh㈵>        {Gz?      ?       c                    sf   t  jd|||d| || _|| _|| _|| _|| _|| _|| _|	| _	|| _
|| _|| _|
| _d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizeintermediate_sizeprojection_dimnum_hidden_layersnum_attention_headsmax_position_embeddingslayer_norm_eps
hidden_actinitializer_rangeinitializer_factorattention_dropout)selfr%   r&   r'   r(   r)   r*   r+   r-   r,   r0   r.   r/   r   r    r!   kwargs	__class__r"   a/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/clip/configuration_clip.pyr$   f   s   
zCLIPTextConfig.__init__pretrained_model_name_or_pathreturnr   c                 K      |  | | j|fi |\}}|ddkr|d }d|v r:t| dr:|d | jkr:td|d  d| j d | j|fi |S )N
model_typecliptext_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors._set_token_in_kwargsget_config_dictgethasattrr9   loggerwarning	from_dictclsr6   r2   config_dictr"   r"   r5   from_pretrained      
 zCLIPTextConfig.from_pretrained)r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   __name__
__module____qualname____doc__r9   r$   classmethodr   strosPathLikerJ   __classcell__r"   r"   r3   r5   r   '   s*    <$&r   c                       s`   e Zd ZdZdZ										
				d fdd	Zedeee	j
f ddfddZ  ZS )CLIPVisionConfiga  
    This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
    CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
    [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        projection_dim (`int`, *optional*, defaults to 512):
            Dimentionality of text and vision projection layers.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import CLIPVisionConfig, CLIPVisionModel

    >>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
    >>> configuration = CLIPVisionConfig()

    >>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
    >>> model = CLIPVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```clip_vision_model      r   r   r	          r   r   r   r   r   c                    sd   t  jdi | || _|| _|| _|| _|| _|| _|| _|| _	|| _
|| _|| _|
| _|	| _d S )Nr"   )r#   r$   r&   r'   r(   r)   r*   num_channels
patch_size
image_sizer.   r/   r0   r,   r-   )r1   r&   r'   r(   r)   r*   r\   r^   r]   r-   r,   r0   r.   r/   r2   r3   r"   r5   r$      s   
zCLIPVisionConfig.__init__r6   r7   r   c                 K   r8   )Nr9   r:   vision_configr<   r=   r>   r?   rG   r"   r"   r5   rJ      rK   z CLIPVisionConfig.from_pretrained)rX   rY   r   r   r   r	   rZ   r[   r   r   r   r   r   rL   r"   r"   r3   r5   rV      s&    6!&rV   c                       s>   e Zd ZdZdZ	d fdd	Zeded	efd
dZ	  Z
S )
CLIPConfigaL  
    [`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
    a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
    a configuration with the defaults will yield a similar configuration to that of the CLIP
    [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`CLIPTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`CLIPVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimentionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import CLIPConfig, CLIPModel

    >>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
    >>> configuration = CLIPConfig()

    >>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
    >>> model = CLIPModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
    >>> from transformers import CLIPTextConfig, CLIPVisionConfig

    >>> # Initializing a CLIPText and CLIPVision configuration
    >>> config_text = CLIPTextConfig()
    >>> config_vision = CLIPVisionConfig()

    >>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
    ```r:   Nr   /L
F@c                    s  | dd }| dd }t jdi | |d ur]|d u ri }tdi | }| D ]+\}	}
|	|v rW|
||	 krW|	dvrW|	|v rLd|	 d|	 d}nd|	 d}t| q,|| |d ur|d u rgi }t	di | }d	|v rd
d |d	  D |d	< | D ]+\}	}
|	|v r|
||	 kr|	dvr|	|v rd|	 d|	 d}nd|	 d}t| q|| |d u ri }t
d |d u ri }t
d tdi || _t	di || _|| _|| _d| _d S )Ntext_config_dictvision_config_dict)transformers_version`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zj`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The value `text_config["z"]` will be overriden.id2labelc                 S   s   i | ]	\}}t ||qS r"   )rR   ).0keyvaluer"   r"   r5   
<dictcomp>k  s    z'CLIPConfig.__init__.<locals>.<dictcomp>zv` is found in both `vision_config_dict` and `vision_config` but with different values. The value `vision_config_dict["zp`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. The value `vision_config["zO`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.zS`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.r   r"   )popr#   r$   r   to_dictitemsrD   rE   updaterV   infor;   r_   r(   logit_scale_init_valuer/   )r1   r;   r_   r(   rp   r2   rb   rc   _text_config_dictrh   ri   message_vision_config_dictr3   r"   r5   r$   :  sl   








zCLIPConfig.__init__r;   r_   c                 K   s   | d|  |  d|S )z
        Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
        configuration.

        Returns:
            [`CLIPConfig`]: An instance of a configuration object
        )r;   r_   Nr"   )rl   )rH   r;   r_   r2   r"   r"   r5   from_text_vision_configs  s   
z#CLIPConfig.from_text_vision_configs)NNr   ra   )rM   rN   rO   rP   r9   r$   rQ   r   rV   rt   rU   r"   r"   r3   r5   r`   
  s    -Xr`   c                       s   e Zd Zedeeeeef f fddZedeeeeef f fddZede	fddZ
				dd
ddededed deeef f
 fddZedefddZ  ZS )CLIPOnnxConfigr7   c                 C   s0   t ddddfdddddd	fd
dddfgS )N	input_idsbatchsequence)r   r   pixel_valuesr\   heightwidth)r   r      r	   attention_maskr   r1   r"   r"   r5   inputs  s   zCLIPOnnxConfig.inputsc                 C   s0   t dddifdddifdddifdddifgS )Nlogits_per_imager   rw   logits_per_texttext_embedsimage_embedsr   r~   r"   r"   r5   outputs  s   



zCLIPOnnxConfig.outputsc                 C      dS )Ng-C6?r"   r~   r"   r"   r5   atol_for_validation     z"CLIPOnnxConfig.atol_for_validationN	processorr
   
batch_size
seq_length	frameworkr   c                    s6   t  j|j|||d}t  j|j||d}i ||S )N)r   r   r   )r   r   )r#   generate_dummy_inputs	tokenizerimage_processor)r1   r   r   r   r   text_input_dictimage_input_dictr3   r"   r5   r     s   
z$CLIPOnnxConfig.generate_dummy_inputsc                 C   r   )N   r"   r~   r"   r"   r5   default_onnx_opset  r   z!CLIPOnnxConfig.default_onnx_opset)r   r   N)rM   rN   rO   propertyr   rR   intr   r   floatr   r   r   r   r   rU   r"   r"   r3   r5   ru     s.     	 

ru   )rP   rS   collectionsr   typingr   r   r   r   r   processing_utilsr
   utilsr   configuration_utilsr   onnxr   r   
get_loggerrM   rD   "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAPr   rV   r`   ru   r"   r"   r"   r5   <module>   s$   
vm 