o
    hUR                     @   sv   d Z ddlZddlmZ ddlmZ ddlmZ ee	Z
ddiZG d	d
 d
eZG dd deZG dd deZdS )z CLIPSeg model configuration    N)Union   )PretrainedConfig)loggingzCIDAS/clipseg-rd64zBhttps://huggingface.co/CIDAS/clipseg-rd64/resolve/main/config.jsonc                       sb   e Zd ZdZdZ									
						d fdd	Zedeee	j
f ddfddZ  ZS )CLIPSegTextConfiga  
    This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
    CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`CLIPSegModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 77):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 49406):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 49407):
            End of stream token id.

    Example:

    ```python
    >>> from transformers import CLIPSegTextConfig, CLIPSegTextModel

    >>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegTextConfig()

    >>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```clipseg_text_model               M   
quick_geluh㈵>        {Gz?      ?       c                    s`   t  jd|||d| || _|| _|| _|| _|| _|| _|| _|| _	|
| _
|| _|	| _d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddingslayer_norm_eps
hidden_actinitializer_rangeinitializer_factorattention_dropout)selfr   r   r   r   r    r!   r#   r"   r&   r$   r%   r   r   r   kwargs	__class__r   g/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/clipseg/configuration_clipseg.pyr   \   s   
zCLIPSegTextConfig.__init__pretrained_model_name_or_pathreturnr   c                 K      |  | | j|fi |\}}|ddkr|d }d|v r:t| dr:|d | jkr:td|d  d| j d | j|fi |S )N
model_typeclipsegtext_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors._set_token_in_kwargsget_config_dictgethasattrr/   loggerwarning	from_dictclsr,   r(   config_dictr   r   r+   from_pretrained|      
 z!CLIPSegTextConfig.from_pretrained)r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   __name__
__module____qualname____doc__r/   r   classmethodr   strosPathLiker@   __classcell__r   r   r)   r+   r      s(    : &r   c                       s^   e Zd ZdZdZ										
			d fdd	Zedeee	j
f ddfddZ  ZS )CLIPSegVisionConfigaH  
    This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
    CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel

    >>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegVisionConfig()

    >>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```clipseg_vision_model      r   r          r   r   r   r   r   c                    s^   t  jdi | || _|| _|| _|| _|| _|| _|| _|| _	|| _
|
| _|	| _|| _d S )Nr   )r   r   r   r   r   r    num_channels
patch_size
image_sizer$   r%   r&   r"   r#   )r'   r   r   r   r    rR   rT   rS   r#   r"   r&   r$   r%   r(   r)   r   r+   r      s   
zCLIPSegVisionConfig.__init__r,   r-   r   c                 K   r.   )Nr/   r0   vision_configr2   r3   r4   r5   r=   r   r   r+   r@      rA   z#CLIPSegVisionConfig.from_pretrained)rN   rO   r   r   r   rP   rQ   r   r   r   r   r   rB   r   r   r)   r+   rL      s$    4&rL   c                       sX   e Zd ZdZdZddddg dddd	d
dddf fdd	ZededefddZ	  Z
S )CLIPSegConfiga  
    [`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to
    instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`CLIPSegTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The inital value of the *logit_scale* paramter. Default is used as per the original CLIPSeg implementation.
        extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`):
            Layers to extract when forwarding the query image through the frozen visual backbone of CLIP.
        reduce_dim (`int`, *optional*, defaults to 64):
            Dimensionality to reduce the CLIP vision embedding.
        decoder_num_attention_heads (`int`, *optional*, defaults to 4):
            Number of attention heads in the decoder of CLIPSeg.
        decoder_attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        decoder_intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder.
        conditional_layer (`int`, *optional*, defaults to 0):
            The layer to use of the Transformer encoder whose activations will be combined with the condition
            embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used.
        use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`):
            Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained
            segmentation.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import CLIPSegConfig, CLIPSegModel

    >>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegConfig()

    >>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig

    >>> # Initializing a CLIPSegText and CLIPSegVision configuration
    >>> config_text = CLIPSegTextConfig()
    >>> config_vision = CLIPSegVisionConfig()

    >>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision)
    ```r0   Nr	   g/L
F@)r      	   @      r   r   r
   r   Fc                    s  | dd }| dd }t jdi | |d ur]|d u ri }tdi | }| D ]+\}}||v rW||| krW|dvrW||v rLd| d| d}nd| d}t| q,|| |d ur|d u rgi }t	di | }d	|v rd
d |d	  D |d	< | D ]+\}}||v r||| kr|dvr||v rd| d| d}nd| d}t| q|| |d u ri }t
d |d u ri }t
d tdi || _t	di || _|| _|| _|| _|| _|| _|| _|	| _|
| _|| _d| _|| _d S )Ntext_config_dictvision_config_dict)transformers_version`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zm`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The value `text_config["z"]` will be overriden.id2labelc                 S   s   i | ]	\}}t ||qS r   )rH   ).0keyvaluer   r   r+   
<dictcomp>x  s    z*CLIPSegConfig.__init__.<locals>.<dictcomp>zv` is found in both `vision_config_dict` and `vision_config` but with different values. The value `vision_config_dict["zs`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. The value `vision_config["zR`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.zV`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.r   r   )popr   r   r   to_dictitemsr:   r;   updaterL   infor1   rU   projection_dimlogit_scale_init_valueextract_layers
reduce_dimdecoder_num_attention_headsdecoder_attention_dropoutdecoder_hidden_actdecoder_intermediate_sizeconditional_layerr%   "use_complex_transposed_convolution)r'   r1   rU   ri   rj   rk   rl   rm   rn   ro   rp   rq   rr   r(   r[   r\   _text_config_dictra   rb   message_vision_config_dictr)   r   r+   r   :  s|   








zCLIPSegConfig.__init__r1   rU   c                 K   s   | d|  |  d|S )z
        Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision
        model configuration.

        Returns:
            [`CLIPSegConfig`]: An instance of a configuration object
        )r1   rU   Nr   )re   )r>   r1   rU   r(   r   r   r+   from_text_vision_configs  s   
z&CLIPSegConfig.from_text_vision_configs)rC   rD   rE   rF   r/   r   rG   r   rL   rv   rK   r   r   r)   r+   rV      s$    ?mrV   )rF   rI   typingr   configuration_utilsr   utilsr   
get_loggerrC   r:   %CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAPr   rL   rV   r   r   r   r+   <module>   s   
pi