o
    h                     @   s  d Z ddlZddlmZmZmZmZ ddlZddlm	  m
Z ddlZddlm	Z	 ddlmZ ddlmZ ddlmZmZ dd	lmZ dd
lmZmZmZmZ ddlmZ eeZdZ dZ!dgZ"G dd de	j#Z$G dd de	j#Z%G dd de	j#Z&G dd de	j#Z'G dd de	j#Z(G dd de	j#Z)G dd de	j#Z*G dd de	j#Z+G dd  d e	j#Z,G d!d" d"e	j#Z-G d#d$ d$e	j#Z.G d%d& d&eZ/d'Z0d(Z1ed)e0G d*d+ d+e/Z2ed,e0G d-d. d.e/Z3dS )/z PyTorch CPMAnt    N)ListOptionalTupleUnion)nn)CrossEntropyLoss   )ACT2FN)BaseModelOutputWithPastCausalLMOutputWithPast)PreTrainedModel)add_code_sample_docstringsadd_start_docstrings%add_start_docstrings_to_model_forwardlogging   )CpmAntConfigzopenbmb/cpm-ant-10br   c                       s6   e Zd ZdZdef fddZdejfddZ  Z	S )CpmAntLayerNormzv
    We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details."
    configc                    s2   t    |j| _|j| _tt|j| _	d S N)
super__init__epshidden_sizedim_normr   	Parametertorchemptyweightselfr   	__class__ `/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/cpmant/modeling_cpmant.pyr   2   s   
zCpmAntLayerNorm.__init__hidden_statesc                 C   s^   | d| jkrtd|j}|tjdjddd}|t	|| j
  || j }|S )f
        Args:
            hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
        z'hidden_states.size(-1) != self.dim_norm   T)dimkeepdim)sizer   AssertionErrordtypetor   float32powmeanrsqrtr   r   )r    r%   	old_dtypevariancer#   r#   r$   forward9   s    zCpmAntLayerNorm.forward)
__name__
__module____qualname____doc__r   r   r   Tensorr5   __classcell__r#   r#   r!   r$   r   -   s    r   c                       sp   e Zd Zdef fddZ			ddejdejdejd	ejd
ee	 dee
ejejf  dee	 fddZ  ZS )CpmAntAttentionr   c                    s   t    |j| _|j| _|j| _tj| j| j| j dd| _	tj| j| j| j dd| _
tj| j| j| j dd| _tj| j| j | jdd| _tjjdd| _|jd uratjj|jd| _d S d | _d S )NFbiasr'   r)   )p)r   r   r   	dim_modelnum_attention_heads	num_headsdim_headr   Linear	project_q	project_k	project_vattention_outr   Softmaxsoftmax	dropout_pDropoutdropoutr   r!   r#   r$   r   G   s   


zCpmAntAttention.__init__FNhidden_q	hidden_kvattention_maskposition_biasoutput_attentionspast_key_values	use_cachec              	   C   s  | d}| d}	| d}
| |}| |}| |}|||	| j| jdddd}|||
| j| jdddd}|||
| j| jdddd}|durmtj	|d |gdd}tj	|d |gdd}| d}
t
||ddt| j }|| }t|||d|	|
td	ktjtd
|j|jd}| |}t|||d|	|
td	ktjd|j|jd}|r|}nd}| jdur| |}t
||}||| j|	| jdddd}| ||	| j| j }| |}d}|r||f}|||fS )a  
        Args:
            hidden_q (`torch.Tensor`):
                Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
            hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)):
                Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)`
            attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
                Avoid invalid areas to participate in the calculation of self-attention.
            position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
                Provide positional information to self-attention block.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*):
                Cached past key and value projection states.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        r   r   r(   r   Nr?   r'   Fz-inf)devicer-   )r+   rF   rG   rH   viewrC   rD   permuter   catmatmul	transposemathsqrtmasked_filltensorscalar_tensorfloatrW   r-   rK   rN   
contiguousrI   )r    rO   rP   rQ   rR   rS   rT   rU   
batch_sizelen_qlen_kquerykeyvaluescoreattn_weightsr#   r#   r$   r5   Z   sN   





   
 


 

zCpmAntAttention.forward)FNN)r6   r7   r8   r   r   r   r:   
BoolTensorr   boolr   r5   r;   r#   r#   r!   r$   r<   F   s(    r<   c                       p   e Zd Zdef fddZ				ddejdejdeej d	ee d
ee	ejejf  dee fddZ
  ZS )CpmAntSelfAttentionBlockr   c                    B   t    t|| _t|| _|jrtj	|j| _
d S d | _
d S r   )r   r   r   layernorm_before_attentionr<   self_attentionrL   r   r   rM   rN   r   r!   r#   r$   r         



z!CpmAntSelfAttentionBlock.__init__NFr%   rQ   rR   rS   rT   rU   c           
   	   C   sP   |  |}| |||||||}|\}}}	| jdur| |}|| }|||	fS )a  
        Args:
            hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
                Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
            attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
                Avoid invalid areas to participate in the calculation of self-attention.
            position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
                Provide positional information to self-attention block.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            past_key_values (`Tuple(torch.FloatTensor)`, *optional*):
                Cached past key and value projection states.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        N)rq   rr   rN   )
r    r%   rQ   rR   rS   rT   rU   outputsrk   current_key_valuer#   r#   r$   r5      s   




z CpmAntSelfAttentionBlock.forwardNFNNr6   r7   r8   r   r   r   r:   r   rm   r   r5   r;   r#   r#   r!   r$   ro      s&    ro   c                       2   e Zd Zdef fddZdejfddZ  ZS )CpmAntDenseGatedACTr   c                    sF   t    tj|j|jdd| _tj|j|jdd| _tj	 | _
d S NFr=   )r   r   r   rE   r   dim_ffw_0w_1r   GELUactr   r!   r#   r$   r      s   
zCpmAntDenseGatedACT.__init__r%   c                 C   s&   |  | |}| |}|| }|S )zTransform an input tensor from one feature space to another via a nonlinear operation

        Args:
            hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
        )r   r|   r}   )r    r%   
gate_scorer#   r#   r$   r5      s   
zCpmAntDenseGatedACT.forward	r6   r7   r8   r   r   r   r:   r5   r;   r#   r#   r!   r$   ry      s    ry   c                       rx   )CpmAntFeedForwardr   c                    sP   t    t|| _|jd urtj|j| _nd | _tj	|j
|jdd| _d S rz   )r   r   ry   w_inrL   r   r   rM   rN   rE   r{   r   w_outr   r!   r#   r$   r      s   


zCpmAntFeedForward.__init__r%   c                 C   s,   |  |}| jdur| |}| |}|S )r&   N)r   rN   r   r    r%   r#   r#   r$   r5      s
   



zCpmAntFeedForward.forwardr   r#   r#   r!   r$   r      s    
r   c                       rx   )CpmAntFFNBlockr   c                    rp   r   )r   r   r   layernorm_before_ffnr   ffnrL   r   r   rM   rN   r   r!   r#   r$   r     rs   zCpmAntFFNBlock.__init__r%   c                 C   s4   |  |}| |}| jdur| |}|| }|S )z
        Args:
            hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
                Hidden states before feed forward layer.
        N)r   r   rN   )r    r%   
ln_outputsrt   r#   r#   r$   r5     s   
	


zCpmAntFFNBlock.forwardr   r#   r#   r!   r$   r     s
    	r   c                       rn   )CpmAntTransformerBlockr   c                    s"   t    t|| _t|| _d S r   )r   r   ro   self_attr   r   r   r!   r#   r$   r   )  s   

zCpmAntTransformerBlock.__init__NFr%   rQ   rR   rS   rT   rU   c           	      C   s4   | j ||||||d}|\}}}| |}|||fS )a  
        Args:
            hidden_states (`torch.Tensor`):
                Input to the layer of shape `(batch, seq_len, dim_model)`
            attention_mask (`torch.Tensor`):
                Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
            position_bias (`torch.Tensor`):
                Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
                Cached past key and value projection states
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        )rQ   rR   rS   rT   rU   )r   r   )	r    r%   rQ   rR   rS   rT   rU   rk   ru   r#   r#   r$   r5   .  s   
	

zCpmAntTransformerBlock.forwardrv   rw   r#   r#   r!   r$   r   (  s&    	r   c                       st   e Zd Zdef fddZ				ddejdejdejdee d	ee d
ee	ejejf  dee fddZ
  ZS )CpmAntEncoderr   c                    s@   t     j| _t fddt| jD | _t | _	d S )Nc                    s   g | ]}t  qS r#   )r   ).0ithr   r#   r$   
<listcomp>[  s    z*CpmAntEncoder.__init__.<locals>.<listcomp>)
r   r   num_hidden_layers
num_layersr   
ModuleListrangelayersr   output_layernormr   r!   r   r$   r   X  s   
 zCpmAntEncoder.__init__Nr%   rQ   rR   rS   output_hidden_statesrT   rU   c              	   C   s   |rdnd}|r
dnd}	|rdnd}
t | jD ]0\}}|r"||f7 }||||||r-|| nd|d}|\}}}|r>|	|f7 }	|durG|
|f }
q| |}|rT||f7 }||
||	fS )a%  
        Args:
            hidden_states (`torch.Tensor`):
                Input to the layer of shape `(batch, seq_len, dim_model)`
            attention_mask (`torch.Tensor`):
                Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
            position_bias (`torch.Tensor`):
                Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers.
            past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
                Cached past key and value projection states
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        r#   N)rS   rT   rU   )	enumerater   r   )r    r%   rQ   rR   rS   r   rT   rU   all_hidden_statesall_self_attnscurrent_key_valuesilayerlayer_outputsrk   ru   r#   r#   r$   r5   _  s0   





zCpmAntEncoder.forward)NNNNrw   r#   r#   r!   r$   r   W  s*    r   c                       s2   e Zd Z fddZdejdejfddZ  ZS )CpmAntIntermediatec                    sD   t    t|j|j| _t|jt	rt
|j | _d S |j| _d S r   )r   r   r   rE   r   intermediate_sizedense
isinstance
hidden_actstrr	   intermediate_act_fnr   r!   r#   r$   r     s
   
zCpmAntIntermediate.__init__r%   returnc                 C   s   |  |}| |}|S r   )r   r   r   r#   r#   r$   r5     s   

zCpmAntIntermediate.forwardr6   r7   r8   r   r   r:   r5   r;   r#   r#   r!   r$   r     s    r   c                       sV   e Zd Zdef fddZdejdejdejdejfdd	Zd
d ZdddZ	  Z
S )CpmAntSegmentPositionEmbeddingr   c                    sR   t    |j| _|j| _|j| _|j| _	t
t|j|j |j |j| _d S r   )r   r   rB   rC   position_bias_num_bucketsnum_bucketsposition_bias_max_distancemax_distancesegment_typesnum_segmentsr   r   r   r   relative_attention_biasr   r!   r#   r$   r     s   

z'CpmAntSegmentPositionEmbedding.__init__key_pos	query_poskey_segmentquery_segmentc              	   C   s  t   |d}|d}|d}|d|dkr/td|d d|d d||dks=||dkrKtd| d|d d||dkr`td| d|d d||d|}|||d}||d|}|||d}| ||}|| j }| jt j	|t j
|jd	d d d f t j	|t j
|jd	d d d f  | j| jd
}	t ||k|	d d d d d f |}W d    n1 sw   Y  t|| j}
|
dddd }
|
S )Nr   r   z>key_pos.size(0) should be equal to query_pos.size(0), but got z and !z7keylen should be equal to key_segment.size(1), but got z;querylen should be equal to query_segment.size(1), but got r'   r-   rW   )r   r   r   r(   )r   no_gradr+   r,   szierX   !_segment_relative_position_bucketr   _position_bucketarangeint32rW   r   whereF	embeddingr   rY   rc   )r    r   r   r   r   batchkeylenquerylenrelative_position_bucketabsolute_position_bucketembedsr#   r#   r$   r5     sL   




(z&CpmAntSegmentPositionEmbedding.forwardc                 C   s   || j  | S r   )r   )r    r   r   r#   r#   r$   r     s   z@CpmAntSegmentPositionEmbedding._segment_relative_position_bucket       c                 C   s   d}|d }|dk tj| }t|}|d }||k }|t| | t||  ||   tj }t|t||d }|t	|| tj|7 }|S )Nr   r(   r   )
r.   r   r   abslogrb   r]   min	full_liker   )r    relative_positionr   r   relative_buckets	max_exactis_smallrelative_postion_if_larger#   r#   r$   r     s(   
z/CpmAntSegmentPositionEmbedding._position_bucket)r   r   )r6   r7   r8   r   r   r   r:   r5   r   r   r;   r#   r#   r!   r$   r     s    
4r   c                       s8   e Zd Z fddZdejdejdejfddZ  ZS )CpmAntOutputc                    sB   t    t|j|j| _tj|j|jd| _t	|j
| _d S )N)r   )r   r   r   rE   r   r   r   	LayerNormlayer_norm_epsrM   hidden_dropout_probrN   r   r!   r#   r$   r     s   
zCpmAntOutput.__init__r%   input_tensorr   c                 C   s&   |  |}| |}| || }|S r   )r   rN   r   )r    r%   r   r#   r#   r$   r5     s   

zCpmAntOutput.forwardr   r#   r#   r!   r$   r     s    $r   c                   @   s    e Zd ZdZeZdZdd ZdS )CpmAntPreTrainedModelz
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    cpmantc                 C   s   t |tjr |jjjd| jjd |jdur|jj	  dS dS t |tj
rC|jjjd| jjd |jdurA|jj|j 	  dS dS t |tjrX|jj	  |jjd dS t |trf|jjd dS t |trx|jjjd| jjd dS dS )zInitialize the weightsg        )r1   stdNg      ?)r   r   rE   r   datanormal_r   init_stdr>   zero_	Embeddingpadding_idxr   fill_r   r   r   )r    moduler#   r#   r$   _init_weights  s$   



z#CpmAntPreTrainedModel._init_weightsN)r6   r7   r8   r9   r   config_classbase_model_prefixr   r#   r#   r#   r$   r     s
    r   aB  
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters
        config ([`~CpmAntConfig`]): Model configuration class with all the parameters of the
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
a  
    Args:
        input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
zTThe bare CPMAnt Model outputting raw hidden-states without any specific head on top.c                       s   e Zd Zdef fddZdd Zdd Zdd	 Zee	e
eeed
						ddeej dee dee deeeej   dee dee deeej ef fddZ  ZS )CpmAntModelr   c                    sl   t  | t|| _t|j|j| _t|j	|j
|j  |j| _t|| _|j| _|j	| _	|   d S r   )r   r   r   encoderr   r   r   r   segment_embedding
vocab_sizeprompt_typesprompt_lengthinput_embeddingr   rR   	post_initr   r!   r#   r$   r   W  s   

zCpmAntModel.__init__c                 C      | j S r   r   r    r#   r#   r$   get_input_embeddingsd     z CpmAntModel.get_input_embeddingsc                 K   
   || _ d S r   r   )r    
embeddingskwargsr#   r#   r$   set_input_embeddingsg     
z CpmAntModel.set_input_embeddingsc                 C   s>  | d}| d}|j}tj||dtj||dddk}|d d d d d f |d d d d d f  |d||@ B }	|	|d d d d d f |d d d d d f k@ }	tjtt|| j	 d d d |dd d d f 
|d|d d d f k }
tjtj|| j	|d |
fdd}
|
||d|
|d|@ |	@ }	|	S )Nr   r   )rW   r'   r?   )r+   rW   r   r   rX   logical_notr`   listr   r   repeatrZ   onesrm   )r    	input_idsspancontextlengthr   seqlenrW   directional_mask_2drQ   mask_1dr#   r#   r$   _prepare_attention_maskj  s   

$&08$ z#CpmAntModel._prepare_attention_mask
checkpointoutput_typer   Nr   rS   r   rT   rU   return_dictr   c              	   K   sV  |d ur|n| j j}|d ur|n| j j}|d ur|n| j j}|d ur$|n| j j}|jtjkr4|tj}|j|j	}}	t
|dkddj||	d}
|
dkdj||	d}tjtj| jd | j | jd | j ||	d|dd|fdd}| \}}tjtj|| j||	d|
fdd}
tj||fd||	d}tj|||	d|d}tj||fd||	d}|d u rd}td g| jj }| }| |}| |
}|| }n |d d d}| |
}| ||d d dd d d f  }| ||||}| |||
|
}|d d |d d d f }|d d d d |d d d f }|d d |d d d f }| |||||||\}}}}|dkr|d d | jd d d f }|d ursd	}|D ]}||d d d d | jd | jd f f7 }qX|}|d urd	}|D ]}||d d | jd d d f f7 }q||}|std
d ||||fD S t||||dS )Nr   r(   r   r'   r   r   r?   rV   r#   c                 s   s    | ]	}|d ur|V  qd S r   r#   )r   vr#   r#   r$   	<genexpr>  s    z&CpmAntModel.forward.<locals>.<genexpr>)last_hidden_staterT   r%   
attentions)r   rS   r   use_return_dictrU   r-   r   r   r.   rW   r   sumrZ   r   r   r   r   r+   zerosfulltupler   r   rc   r   r   r   rR   r
   )r    r   rS   r   rT   rU   r  r   r-   rW   segmentr   r   
seq_lengthr   positionr   past_lengthr%   segment_statesrQ   rR   present_key_valuesr   all_attentionsnew_attentions	attentionnew_hidden_stateshidden_stater#   r#   r$   r5   |  s   	"



$ 


.
&
zCpmAntModel.forward)NNNNNN)r6   r7   r8   r   r   r   r   r   r   CPMANT_INPUTS_DOCSTRINGr   _CHECKPOINT_FOR_DOCr
   _CONFIG_FOR_DOCr   r   r:   rm   r   r   r5   r;   r#   r#   r!   r$   r   R  s@    	r   zy
    The CPMAnt Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
    c                       s   e Zd ZdgZdef fddZeeee	e
ed								ddeej deeeejejf   d	ee d
ee dee deej dee deej deee
f fddZdd Zdd Zdd Zdd Zdd Zdd Z  ZS )CpmAntForCausalLMzlm_head.weightr   c                    sD   t  | t|| _tj|j|j|j|j	  dd| _
|   d S rz   )r   r   r   r   r   rE   r   r   r   r   lm_headr   r   r!   r#   r$   r     s   
zCpmAntForCausalLM.__init__r  Nr   rT   rU   rS   r   labelsr  rQ   r   c	                 K   s   |dur|n| j j}| ||||||}
|r|
jn|
d }| |}d}|dur:t }||d|d|d}|sP|f|
dd  }|durN|f| S |S t|||
j	|
j
|
jdS )u;
  
        Args:
            input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
                Indices of input sequence tokens in the vocabulary.

                Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers.
            labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                CPMAnt will process attention mask automatically, this parameter is a dummy parameter for
                text-generation pipeline.

        Example:

        Text Generation with CpmAntForCausalLM.
        ```python
        >>> from transformers import CPMAntTokenizer, CpmAntForCausalLM

        >>> texts = "今天天气不错，"
        >>> model = CpmAntForCausalLM.from_pretrained("openbmb/cpm-ant-10b")
        >>> tokenizer = CPMAntTokenizer.from_pretrained("openbmb/cpm-ant-10b")
        >>> input_ids = tokenizer(texts, return_tensors="pt")
        >>> outputs = model.generate(**input_ids)
        >>> output_texts = tokenizer.batch_decode(outputs)
        >>> print(output_texts)
        ['今天天气不错，阳光明媚，我和妈妈一起去超市买东西。\n在超市里，我看到了一个很好玩的玩具，它的名字叫“机器人”。它有一个圆圆的脑袋，两只圆圆的眼睛，还有一个圆圆的']
        ```
        Nr   r'   r   )losslogitsrT   r%   r  )r   r	  r   r  r  r   rX   r+   r   rT   r%   r  )r    r   rT   rU   rS   r   r  r  rQ   r   model_outputr%   r   r  	loss_funcoutputr#   r#   r$   r5     s(   =
zCpmAntForCausalLM.forwardc                 C   s   | j jS r   r   r   r   r#   r#   r$   r   M  s   z&CpmAntForCausalLM.get_input_embeddingsc                 C   s   || j _d S r   r$  )r    r   r#   r#   r$   r   P  s   z&CpmAntForCausalLM.set_input_embeddingsc                 C   r   r   r  r   r#   r#   r$   get_output_embeddingsS  r   z'CpmAntForCausalLM.get_output_embeddingsc                 C   r   r   r%  )r    new_embeddingsr#   r#   r$   set_output_embeddingsV  r   z'CpmAntForCausalLM.set_output_embeddingsc                 K   s8   |  }d|v rtdd|d< ||d |dd dS )NrQ   r   rU   rT   )r   rU   rT   )intr   r  get)r    r   r   r#   r#   r$   prepare_inputs_for_generationY  s   
z/CpmAntForCausalLM.prepare_inputs_for_generationc                 C   s<   dd |D }|D ]}|d | |d< |d | |d< q	|S )Nc                 S   s    g | ]}|d urt |n|qS r   )r   )r   eachr#   r#   r$   r   f  s     z4CpmAntForCausalLM._reorder_cache.<locals>.<listcomp>r   r   r#   )r    rT   beam_idxkey_value_layerr#   r#   r$   _reorder_cachee  s
   z CpmAntForCausalLM._reorder_cache)NNNNNNNN)r6   r7   r8   _tied_weights_keysr   r   r   r  r   r  r   r  r   r   r:   r   r   rm   r   r5   r   r   r&  r(  r+  r/  r;   r#   r#   r!   r$   r    sT    
	
Qr  )4r9   r]   typingr   r   r   r   r   torch.nn.functionalr   
functionalr   torch.utils.checkpointtorch.nnr   activationsr	   modeling_outputsr
   r   modeling_utilsr   utilsr   r   r   r   configuration_cpmantr   
get_loggerr6   loggerr  r  $CPMANT_PRETRAINED_MODEL_ARCHIVE_LISTModuler   r<   ro   ry   r   r   r   r   r   r   r   r   CPMANT_START_DOCSTRINGr  r   r  r#   r#   r#   r$   <module>   sV   
h1/B] 