o
    h1                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ d	d
lmZ eeZddiZG dd deZG dd de
ZdS )z DETR model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging   )CONFIG_MAPPINGzfacebook/detr-resnet-50zGhttps://huggingface.co/facebook/detr-resnet-50/resolve/main/config.jsonc                       s   e Zd ZdZdZdgZdddZ					
																													d$ fdd	Zede	fddZ
ede	fdd Zed!efd"d#Z  ZS )%
DetrConfiga  
    This is the configuration class to store the configuration of a [`DetrModel`]. It is used to instantiate a DETR
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the DETR
    [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        use_timm_backbone (`bool`, *optional*, defaults to `True`):
            Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
            API.
        backbone_config (`PretrainedConfig` or `dict`, *optional*):
            The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
            case it will default to `ResNetConfig()`.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        num_queries (`int`, *optional*, defaults to 100):
            Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetrModel`] can
            detect in a single image. For COCO, we recommend 100 queries.
        d_model (`int`, *optional*, defaults to 256):
            Dimension of the layers.
        encoder_layers (`int`, *optional*, defaults to 6):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 6):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 2048):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 2048):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        init_xavier_std (`float`, *optional*, defaults to 1):
            The scaling factor used for the Xavier initialization gain in the HM Attention map module.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        auxiliary_loss (`bool`, *optional*, defaults to `False`):
            Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
        position_embedding_type (`str`, *optional*, defaults to `"sine"`):
            Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
        backbone (`str`, *optional*, defaults to `"resnet50"`):
            Name of convolutional backbone to use in case `use_timm_backbone` = `True`. Supports any convolutional
            backbone from the timm package. For a list of all available models, see [this
            page](https://rwightman.github.io/pytorch-image-models/#load-a-pretrained-model).
        use_pretrained_backbone (`bool`, *optional*, defaults to `True`):
            Whether to use pretrained weights for the backbone. Only supported when `use_timm_backbone` = `True`.
        dilation (`bool`, *optional*, defaults to `False`):
            Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
            `use_timm_backbone` = `True`.
        class_cost (`float`, *optional*, defaults to 1):
            Relative weight of the classification error in the Hungarian matching cost.
        bbox_cost (`float`, *optional*, defaults to 5):
            Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
        giou_cost (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
        mask_loss_coefficient (`float`, *optional*, defaults to 1):
            Relative weight of the Focal loss in the panoptic segmentation loss.
        dice_loss_coefficient (`float`, *optional*, defaults to 1):
            Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
        bbox_loss_coefficient (`float`, *optional*, defaults to 5):
            Relative weight of the L1 bounding box loss in the object detection loss.
        giou_loss_coefficient (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss in the object detection loss.
        eos_coefficient (`float`, *optional*, defaults to 0.1):
            Relative classification weight of the 'no-object' class in the object detection loss.

    Examples:

    ```python
    >>> from transformers import DetrConfig, DetrModel

    >>> # Initializing a DETR facebook/detr-resnet-50 style configuration
    >>> configuration = DetrConfig()

    >>> # Initializing a model (with random weights) from the facebook/detr-resnet-50 style configuration
    >>> model = DetrModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```detrpast_key_valuesd_modelencoder_attention_heads)hidden_sizenum_attention_headsTNr   d                    relu   皙?{Gz?      ?Fsineresnet50      r
   c"           %         sL  |d ur
|r
t d|s6|d u rtd td dgd}nt|tr1|d}#t|# }$|$|}d\}}}|| _|| _	|| _
|| _|| _|| _|| _|| _|	| _|| _|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _ || _!|| _"|| _#|| _$|| _%|| _&| | _'|!| _(t) j*d	d|i|" d S )
NzAYou can't specify both `backbone_config` and `use_timm_backbone`.zX`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.resnetstage4)out_features
model_type)NNNis_encoder_decoder )+
ValueErrorloggerinfor   
isinstancedictget	from_dictuse_timm_backbonebackbone_confignum_channelsnum_queriesr   encoder_ffn_dimencoder_layersr   decoder_ffn_dimdecoder_layersdecoder_attention_headsdropoutattention_dropoutactivation_dropoutactivation_functioninit_stdinit_xavier_stdencoder_layerdropdecoder_layerdropnum_hidden_layersauxiliary_lossposition_embedding_typebackboneuse_pretrained_backbonedilation
class_cost	bbox_cost	giou_costmask_loss_coefficientdice_loss_coefficientbbox_loss_coefficientgiou_loss_coefficienteos_coefficientsuper__init__)%selfr.   r/   r0   r1   r3   r2   r   r5   r4   r6   r=   r>   r%   r:   r   r7   r8   r9   r;   r<   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   kwargsbackbone_model_typeconfig_class	__class__r&   a/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/detr/configuration_detr.pyrN      sZ   %




zDetrConfig.__init__returnc                 C      | j S N)r   rO   r&   r&   rU   r         zDetrConfig.num_attention_headsc                 C   rW   rX   )r   rY   r&   r&   rU   r      rZ   zDetrConfig.hidden_sizer/   c                 K   s   | dd|i|S )a-  Instantiate a [`DetrConfig`] (or a derived class) from a pre-trained backbone model configuration.

        Args:
            backbone_config ([`PretrainedConfig`]):
                The backbone configuration.
        Returns:
            [`DetrConfig`]: An instance of a configuration object
        r/   Nr&   r&   )clsr/   rP   r&   r&   rU   from_backbone_config   s   
zDetrConfig.from_backbone_config)!TNr   r   r   r   r   r   r   r   r   r   Tr   r   r   r   r   r   r   Fr   r   TFr   r    r
   r   r   r    r
   r   )__name__
__module____qualname____doc__r$   keys_to_ignore_at_inferenceattribute_maprN   propertyintr   r   classmethodr   r\   __classcell__r&   r&   rS   rU   r   $   s^    cXr   c                   @   s\   e Zd ZedZedeeee	ef f fddZ
edefddZede	fddZd	S )
DetrOnnxConfigz1.11rV   c                 C   s"   t ddddddfdddifgS )	Npixel_valuesbatchr0   heightwidth)r   r   r
   r   
pixel_maskr   r   rY   r&   r&   rU   inputs   s
   
zDetrOnnxConfig.inputsc                 C      dS )Ngh㈵>r&   rY   r&   r&   rU   atol_for_validation     z"DetrOnnxConfig.atol_for_validationc                 C   rn   )N   r&   rY   r&   r&   rU   default_onnx_opset  rp   z!DetrOnnxConfig.default_onnx_opsetN)r]   r^   r_   r   parsetorch_onnx_minimum_versionrc   r   strrd   rm   floatro   rr   r&   r&   r&   rU   rg      s    
 rg   N)r`   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr   utilsr	   autor   
get_loggerr]   r(   "DETR_PRETRAINED_CONFIG_ARCHIVE_MAPr   rg   r&   r&   r&   rU   <module>   s   
 Y