o
    hC                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
eZdd	d
dddddZG dd deZG dd deZdS )z DistilBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingzGhttps://huggingface.co/distilbert-base-uncased/resolve/main/config.jsonzWhttps://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.jsonzEhttps://huggingface.co/distilbert-base-cased/resolve/main/config.jsonzUhttps://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.jsonzLhttps://huggingface.co/distilbert-base-german-cased/resolve/main/config.jsonzRhttps://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.jsonz_https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json)zdistilbert-base-uncasedz'distilbert-base-uncased-distilled-squadzdistilbert-base-casedz%distilbert-base-cased-distilled-squadzdistilbert-base-german-casedz"distilbert-base-multilingual-casedz/distilbert-base-uncased-finetuned-sst-2-englishc                       sN   e Zd ZdZdZddddZ					
										d fdd	Z  ZS )DistilBertConfiga  
    This is the configuration class to store the configuration of a [`DistilBertModel`] or a [`TFDistilBertModel`]. It
    is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT
    [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`DistilBertModel`] or [`TFDistilBertModel`].
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`):
            Whether to use sinusoidal positional embeddings.
        n_layers (`int`, *optional*, defaults to 6):
            Number of hidden layers in the Transformer encoder.
        n_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        dim (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        hidden_dim (`int`, *optional*, defaults to 3072):
            The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        activation (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        qa_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probabilities used in the question answering model [`DistilBertForQuestionAnswering`].
        seq_classif_dropout (`float`, *optional*, defaults to 0.2):
            The dropout probabilities used in the sequence classification and the multiple choice model
            [`DistilBertForSequenceClassification`].

    Examples:

    ```python
    >>> from transformers import DistilBertConfig, DistilBertModel

    >>> # Initializing a DistilBERT configuration
    >>> configuration = DistilBertConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = DistilBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
distilbertdimn_headsn_layers)hidden_sizenum_attention_headsnum_hidden_layers:w     F            皙?gelu{Gz?皙?r   c                    sl   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _t jdi |d|i d S )Npad_token_id )
vocab_sizemax_position_embeddingssinusoidal_pos_embdsr   r   r
   
hidden_dimdropoutattention_dropout
activationinitializer_range
qa_dropoutseq_classif_dropoutsuper__init__)selfr   r   r   r   r   r
   r   r    r!   r"   r#   r$   r%   r   kwargs	__class__r   m/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/distilbert/configuration_distilbert.pyr'   m   s   zDistilBertConfig.__init__)r   r   Fr   r   r   r   r   r   r   r   r   r   r   )__name__
__module____qualname____doc__
model_typeattribute_mapr'   __classcell__r   r   r*   r,   r   -   s,    8r   c                   @   s.   e Zd Zedeeeeef f fddZdS )DistilBertOnnxConfigreturnc                 C   s6   | j dkrdddd}nddd}td|fd|fgS )	Nzmultiple-choicebatchchoicesequence)r         )r   r9   	input_idsattention_mask)taskr   )r(   dynamic_axisr   r   r,   inputs   s   

zDistilBertOnnxConfig.inputsN)r-   r.   r/   propertyr   strintr?   r   r   r   r,   r4      s    $r4   N)r0   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr-   logger(DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAPr   r4   r   r   r   r,   <module>   s"   
b