# coding=utf-8
# Copyright 2023 the Falcon authors and HuggingFace Inc. team.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Falcon model."""

import math
import warnings
from typing import TYPE_CHECKING, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from torch.nn import functional as F

from ...modeling_attn_mask_utils import (
    AttentionMaskConverter,
    _prepare_4d_causal_attention_mask,
    _prepare_4d_causal_attention_mask_for_sdpa,
)
from ...modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import is_torch_greater_or_equal_than_2_0
from ...utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
)
from .configuration_falcon import FalconConfig


if TYPE_CHECKING:
    from ...configuration_utils import PretrainedConfig

if is_flash_attn_2_available():
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa

logger = logging.get_logger(__name__)

FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "tiiuae/falcon-40b",
    "tiiuae/falcon-40b-instruct",
    "tiiuae/falcon-7b",
    "tiiuae/falcon-7b-instruct",
    "tiiuae/falcon-rw-7b",
    "tiiuae/falcon-rw-1b",
]
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
_CONFIG_FOR_DOC = "FalconConfig"


# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
class FalconLinear(nn.Linear):
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        hidden_states = input @ self.weight.T
        if self.bias is None:
            return hidden_states
        return hidden_states + self.bias


# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Falcon
class FalconRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )


# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Falcon
class FalconLinearScalingRotaryEmbedding(FalconRotaryEmbedding):
    """FalconRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
        t = t / self.scaling_factor

        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)


# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Falcon
class FalconDynamicNTKScalingRotaryEmbedding(FalconRotaryEmbedding):
    """FalconRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (
                (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
            self.register_buffer("inv_freq", inv_freq, persistent=False)

        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)


def _prepare_4d_attention_mask(mask: torch.Tensor, past_key_values_length: int) -> torch.BoolTensor:
    """
    Expands attention_mask from `[batch_size, seq_length]` to `[batch_size, 1, seq_length, seq_length + past_length]`.
    """
    batch_size, total_length = mask.shape
    seq_length = total_length - past_key_values_length if past_key_values_length is not None else total_length

    expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
    return expanded_mask.expand(batch_size, 1, seq_length, total_length)


def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
    batch_size, seq_length = attention_mask.shape
    closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
    base = torch.tensor(
        2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
    )
    powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
    slopes = torch.pow(base, powers)

    if closest_power_of_2 != num_heads:
        extra_base = torch.tensor(
            2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
        )
        num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
        extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
        slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)

    # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
    # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
    # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
    # => the query_length dimension will then be broadcasted correctly
    # This is more or less identical to T5's relative position bias:
    # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
    arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
    alibi = slopes[..., None].bfloat16() * arange_tensor
    return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)


# Copied from transformers.models.bloom.modeling_bloom.dropout_add
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
    """
    Dropout add function

    Args:
        x (`torch.tensor`, *required*):
            input tensor
        residual (`torch.tensor`, *required*):
            residual tensor
        prob (`float`, *required*):
            dropout probability
        training (`bool`, *required*):
            training mode
    """
    out = F.dropout(x, p=prob, training=training)
    out = residual + out
    return out


class FalconAttention(nn.Module):
    def __init__(self, config: FalconConfig):
        super().__init__()

        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.split_size = self.hidden_size
        self.hidden_dropout = config.hidden_dropout
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True
        self._use_sdpa = config._attn_implementation == "sdpa"

        if self.head_dim * self.num_heads != self.hidden_size:
            raise ValueError(
                f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
                f" {self.num_heads})."
            )

        if config.rotary:
            self._init_rope()

        # Layer-wise attention scaling
        self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
        self.beta = self.inv_norm_factor
        if config.new_decoder_architecture:
            qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
        elif config.multi_query:
            qkv_out_dim = self.hidden_size + 2 * self.head_dim
        else:
            qkv_out_dim = 3 * self.hidden_size
        self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
        self.new_decoder_architecture = config.new_decoder_architecture
        self.multi_query = config.multi_query
        self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
        self.attention_dropout = nn.Dropout(config.attention_dropout)
        self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1

    # Copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->Falcon
    def _init_rope(self):
        if self.config.rope_scaling is None:
            self.rotary_emb = FalconRotaryEmbedding(
                self.head_dim,
                max_position_embeddings=self.max_position_embeddings,
                base=self.rope_theta,
            )
        else:
            scaling_type = self.config.rope_scaling["type"]
            scaling_factor = self.config.rope_scaling["factor"]
            if scaling_type == "linear":
                self.rotary_emb = FalconLinearScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.max_position_embeddings,
                    scaling_factor=scaling_factor,
                    base=self.rope_theta,
                )
            elif scaling_type == "dynamic":
                self.rotary_emb = FalconDynamicNTKScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.max_position_embeddings,
                    scaling_factor=scaling_factor,
                    base=self.rope_theta,
                )
            else:
                raise ValueError(f"Unknown RoPE scaling type {scaling_type}")

    def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`

        Args:
            fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]

        Returns:
            query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
            value: [batch_size, seq_length, num_heads, head_dim]
        """
        if self.new_decoder_architecture:
            batch, seq_len, _ = fused_qkv.shape
            qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
            query = qkv[:, :, :, :-2]
            key = qkv[:, :, :, [-2]]
            value = qkv[:, :, :, [-1]]
            key = torch.broadcast_to(key, query.shape)
            value = torch.broadcast_to(value, query.shape)

            query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
            return query, key, value
        elif not self.multi_query:
            batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
            fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
            return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
        else:
            batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
            fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
            return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]

    # Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
    def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
        """
        Merge heads together over the last dimension

        Args:
            x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]

        Returns:
            torch.tensor: [batch_size, seq_length, num_heads * head_dim]
        """
        # What we want to achieve is:
        # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
        batch_size_and_num_heads, seq_length, _ = x.shape
        batch_size = batch_size_and_num_heads // self.num_heads

        # First view to decompose the batch size
        # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
        x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)

        # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
        x = x.permute(0, 2, 1, 3)

        # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
        return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        alibi: Optional[torch.Tensor],
        attention_mask: torch.Tensor,
        position_ids: Optional[torch.LongTensor] = None,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
        **kwargs,
    ):
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        fused_qkv = self.query_key_value(hidden_states)  # [batch_size, seq_length, 3 x hidden_size]
        num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
        # 3 x [batch_size, seq_length, num_heads, head_dim]
        (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)

        batch_size, query_length, _, _ = query_layer.shape

        query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
        key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
        value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)

        kv_seq_len = key_layer.shape[-2]
        if layer_past is not None:
            kv_seq_len += layer_past[0].shape[-2]
        if alibi is None:
            cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
            query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)

        if layer_past is not None:
            past_key, past_value = layer_past
            # concatenate along seq_length dimension:
            #  - key: [batch_size, self.num_heads, kv_length, head_dim]
            #  - value: [batch_size, self.num_heads, kv_length, head_dim]
            key_layer = torch.cat((past_key, key_layer), dim=-2)
            value_layer = torch.cat((past_value, value_layer), dim=-2)

        kv_length = key_layer.shape[-2]
        if use_cache:
            present = (key_layer, value_layer)
        else:
            present = None

        if alibi is None:
            if self._use_sdpa and not output_attentions:
                attn_output = F.scaled_dot_product_attention(
                    query_layer,
                    key_layer,
                    value_layer,
                    attention_mask,
                    0.0,
                    # The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case query_length == 1.
                    is_causal=self.is_causal and attention_mask is None and query_length > 1,
                )
                attention_scores = None
            else:
                attention_scores = query_layer @ key_layer.transpose(-1, -2)
                attention_scores /= math.sqrt(self.head_dim)

                attention_scores = F.softmax(attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype)
                # It is unclear why neither dropout nor head_mask is applied here (while it is with alibi).
                attn_output = attention_scores @ value_layer

            attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
            attn_output = attn_output.permute(0, 2, 1, 3)
            attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)

            attn_output = self.dense(attn_output)

            if output_attentions:
                return attn_output, present, attention_scores
            else:
                return attn_output, present

        else:
            if self._use_sdpa and not output_attentions and head_mask is None:
                attn_output = F.scaled_dot_product_attention(
                    query_layer,
                    key_layer,
                    value_layer,
                    attn_mask=attention_mask,
                    dropout_p=self.attention_dropout.p if self.training else 0.0,
                    is_causal=self.is_causal and attention_mask is None and query_length > 1,
                )
                attn_output = attn_output.transpose(1, 2)
                attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)

                attn_output = self.dense(attn_output)
            else:
                matmul_result = query_layer @ key_layer.transpose(-1, -2)

                # change view to [batch_size, num_heads, q_length, kv_length]
                attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)

                # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
                input_dtype = attention_scores.dtype
                # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
                if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
                    attention_scores = attention_scores.to(torch.float32)

                attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
                attention_logits *= self.inv_norm_factor
                attention_probs = F.softmax(attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype)
                # [batch_size, num_heads, q_length, kv_length]
                attention_probs = self.attention_dropout(attention_probs)

                if head_mask is not None:
                    attention_probs = attention_probs * head_mask

                # change view [batch_size, num_heads, q_length, kv_length]
                attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)

                # matmul: [batch_size * num_heads, q_length, head_dim]
                attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1)

                # change view [batch_size, q_length, num_heads * head_dim]
                attn_output = self._merge_heads(attn_output)

                attn_output = self.dense(attn_output)

            if output_attentions:
                return attn_output, present, attention_probs
            else:
                return attn_output, present


class FalconFlashAttention2(FalconAttention):
    """
    Falcon flash attention module. This module inherits from `FalconAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
        self,
        hidden_states: torch.Tensor,
        alibi: Optional[torch.Tensor],
        attention_mask: torch.Tensor,
        position_ids: Optional[torch.LongTensor] = None,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
        **kwargs,
    ):
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

            # overwrite attention_mask with padding_mask
            attention_mask = kwargs.pop("padding_mask")

        fused_qkv = self.query_key_value(hidden_states)  # [batch_size, seq_length, 3 x hidden_size]
        num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
        # 3 x [batch_size, seq_length, num_heads, head_dim]
        (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)

        batch_size, query_length, _, _ = query_layer.shape

        query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
        key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
        value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)

        kv_seq_len = key_layer.shape[-2]
        if layer_past is not None:
            kv_seq_len += layer_past[0].shape[-2]
        if alibi is None:
            cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
            query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)

        if layer_past is not None and use_cache:
            past_key, past_value = layer_past
            # concatenate along seq_length dimension:
            #  - key: [batch_size, self.num_heads, kv_length, head_dim]
            #  - value: [batch_size, self.num_heads, kv_length, head_dim]
            key_layer = torch.cat((past_key, key_layer), dim=-2)
            value_layer = torch.cat((past_value, value_layer), dim=-2)

        past_key_value = (key_layer, value_layer) if use_cache else None

        # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
        # to be able to avoid many of these transpose/reshape/view.
        query_layer = query_layer.transpose(1, 2)
        key_layer = key_layer.transpose(1, 2)
        value_layer = value_layer.transpose(1, 2)

        if alibi is not None:
            raise ValueError("`alibi` is not supported when `use_flash_attn` is True")

        attn_dropout = self.config.attention_dropout if self.training else 0.0

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in float16 just to be sure everything works as expected.
        input_dtype = query_layer.dtype
        if input_dtype == torch.float32:
            # Handle the case where the model is quantized
            if hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.query_key_value.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_layer = query_layer.to(target_dtype)
            key_layer = key_layer.to(target_dtype)
            value_layer = value_layer.to(target_dtype)

        attn_output = self._flash_attention_forward(
            query_layer, key_layer, value_layer, attention_mask, query_length, dropout=attn_dropout
        )

        attn_weights = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
        attn_output = self.dense(attn_weights)

        if not output_attentions:
            attn_weights = None

        return attn_output, past_key_value, attn_weights

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
    def _flash_attention_forward(
        self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
    ):
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`int`, *optional*):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
        """
        if not self._flash_attn_uses_top_left_mask:
            causal = self.is_causal
        else:
            # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
            causal = self.is_causal and query_length != 1

        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            attn_output_unpad = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=dropout,
                softmax_scale=softmax_scale,
                causal=causal,
            )

            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            attn_output = flash_attn_func(
                query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
            )

        return attn_output

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

        key_layer = index_first_axis(
            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )


class FalconMLP(nn.Module):
    def __init__(self, config: FalconConfig):
        super().__init__()
        hidden_size = config.hidden_size

        self.dense_h_to_4h = FalconLinear(hidden_size, 4 * hidden_size, bias=config.bias)
        self.act = nn.GELU()
        self.dense_4h_to_h = FalconLinear(4 * hidden_size, hidden_size, bias=config.bias)
        self.hidden_dropout = config.hidden_dropout

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.act(self.dense_h_to_4h(x))
        x = self.dense_4h_to_h(x)
        return x


FALCON_ATTENTION_CLASSES = {
    "eager": FalconAttention,
    "sdpa": FalconAttention,  # FalconAttention originally implemented both a forward with & without SDPA
    "flash_attention_2": FalconFlashAttention2,
}


class FalconDecoderLayer(nn.Module):
    def __init__(self, config: FalconConfig):
        super().__init__()
        hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads

        self.self_attention = FALCON_ATTENTION_CLASSES[config._attn_implementation](config)
        self.mlp = FalconMLP(config)
        self.hidden_dropout = config.hidden_dropout
        self.config = config

        if config.new_decoder_architecture:
            # The layer norm before self-attention
            self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
            # The layer norm before the MLP
            self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        else:
            self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
            if not config.parallel_attn:
                self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

    def forward(
        self,
        hidden_states: torch.Tensor,
        alibi: Optional[torch.Tensor],
        attention_mask: torch.Tensor,
        position_ids: Optional[torch.LongTensor] = None,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
        **kwargs,
    ):
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        residual = hidden_states

        if self.config.new_decoder_architecture:
            attention_layernorm_out = self.ln_attn(hidden_states)
            mlp_layernorm_out = self.ln_mlp(hidden_states)
        else:
            attention_layernorm_out = self.input_layernorm(hidden_states)

        # Self attention.
        attn_outputs = self.self_attention(
            attention_layernorm_out,
            layer_past=layer_past,
            attention_mask=attention_mask,
            position_ids=position_ids,
            alibi=alibi,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            **kwargs,
        )

        attention_output = attn_outputs[0]

        if not self.config.new_decoder_architecture:
            if self.config.parallel_attn:
                mlp_layernorm_out = attention_layernorm_out
            else:
                residual = dropout_add(
                    attention_output, residual, self.config.attention_dropout, training=self.training
                )
                mlp_layernorm_out = self.post_attention_layernorm(residual)

        outputs = attn_outputs[1:]

        # MLP.
        mlp_output = self.mlp(mlp_layernorm_out)

        if self.config.new_decoder_architecture or self.config.parallel_attn:
            mlp_output += attention_output

        output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)

        if use_cache:
            outputs = (output,) + outputs
        else:
            outputs = (output,) + outputs[1:]

        return outputs  # hidden_states, present, attentions


FALCON_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

FALCON_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
            `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
            (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.

            If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
            `input_ids`.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`):
            Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
            `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
            their past given to this model should not be passed as `input_ids` as they have already been computed.

            Each element of `past_key_values` is a tuple (past_key, past_value):
            - past_key: [batch_size * num_heads, head_dim, kv_length]
            - past_value: [batch_size * num_heads, kv_length, head_dim]
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.

            If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
            `past_key_values`).
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""


class FalconPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = FalconConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["FalconDecoderLayer"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module: nn.Module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    # Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa
    @classmethod
    def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> "PretrainedConfig":
        # NOTE: Falcon supported SDPA from PyTorch 2.0. We keep it like that for backward compatibility (automatically use SDPA for torch>=2.0).
        if hard_check_only:
            if not is_torch_greater_or_equal_than_2_0:
                raise ImportError("PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.0.")

        if not is_torch_greater_or_equal_than_2_0:
            return config

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)
        if _is_bettertransformer:
            return config

        if not hard_check_only:
            config._attn_implementation = "sdpa"
        return config


@add_start_docstrings(
    "The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
    FALCON_START_DOCSTRING,
)
class FalconModel(FalconPreTrainedModel):
    def __init__(self, config: FalconConfig):
        super().__init__(config)

        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.use_alibi = config.alibi

        # Embedding + LN Embedding
        self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)

        # Transformer blocks
        self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)])
        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
        self._use_sdpa = config._attn_implementation == "sdpa"

        # Final Layer Norm
        self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.word_embeddings

    def set_input_embeddings(self, new_embeddings: torch.Tensor):
        self.word_embeddings = new_embeddings

    @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPastAndCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.h))

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False
        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        # Compute alibi tensor: check build_alibi_tensor documentation
        past_key_values_length = 0
        if past_key_values[0] is not None:
            past_key_values_length = past_key_values[0][0].shape[-2]

        if self.use_alibi:
            mask = (
                torch.ones(
                    (batch_size, seq_length + past_key_values_length), device=inputs_embeds.device, dtype=torch.long
                )
                if attention_mask is None
                else attention_mask
            )
            alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype)
        else:
            alibi = None
            if position_ids is None:
                device = input_ids.device if input_ids is not None else inputs_embeds.device
                position_ids = torch.arange(
                    past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
                )
                position_ids = position_ids.unsqueeze(0)

        if self._use_flash_attention_2:
            # 2d mask is passed through the layers
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        elif self._use_sdpa and not output_attentions:
            # output_attentions=True can not be supported when using SDPA, and we fall back on
            # the manual implementation that requires a 4D causal mask in all cases.
            if alibi is None:
                attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                    attention_mask,
                    (batch_size, seq_length),
                    inputs_embeds,
                    past_key_values_length,
                )
            elif head_mask is None:
                alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:])

                attention_mask_2d = attention_mask
                # We don't call _prepare_4d_causal_attention_mask_for_sdpa as we need to mask alibi using the 4D attention_mask untouched.
                attention_mask = _prepare_4d_causal_attention_mask(
                    attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
                )

                # We take care to integrate alibi bias in the attention_mask here.
                if attention_mask_2d is None:
                    attention_mask = alibi / math.sqrt(self.config.hidden_size // self.num_heads)
                else:
                    attention_mask = torch.masked_fill(
                        alibi / math.sqrt(self.config.hidden_size // self.num_heads),
                        attention_mask < -1,
                        torch.finfo(alibi.dtype).min,
                    )

                    # From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
                    # produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
                    if seq_length > 1:
                        attention_mask = AttentionMaskConverter._unmask_unattended(
                            attention_mask, attention_mask_2d, unmasked_value=0.0
                        )
            else:
                # PyTorch SDPA does not support head_mask, we fall back on the eager implementation in this case.
                attention_mask = _prepare_4d_causal_attention_mask(
                    attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
                )
        else:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
            )

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape batch_size x num_heads x N x N
        # head_mask has shape n_layer x batch x num_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                outputs = self._gradient_checkpointing_func(
                    block.__call__,
                    hidden_states,
                    alibi,
                    attention_mask,
                    position_ids,
                    head_mask[i],
                    layer_past,
                    use_cache,
                    output_attentions,
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    alibi=alibi,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

        # Add last hidden state
        hidden_states = self.ln_f(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


@add_start_docstrings(
    "The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).",
    FALCON_START_DOCSTRING,
)
class FalconForCausalLM(FalconPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: FalconConfig):
        super().__init__(config)
        self.transformer = FalconModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: torch.Tensor):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor,
        past_key_values: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> dict:
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]

        # Note: versions of Falcon with alibi do not use position_ids. It is used with RoPE.
        if not self.transformer.use_alibi and attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        return {
            "input_ids": input_ids,
            "position_ids": position_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
        }

    @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            batch_size, seq_length, vocab_size = shift_logits.shape
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
            )

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    def _reorder_cache(
        self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.

        Output shares the same memory storage as `past`.
        """

        # Get a copy of `beam_idx` on all the devices where we need those indices.
        device_to_beam_idx = {
            past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
        }
        reordered_past = tuple(
            (
                layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
                layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
            )
            for layer_past in past
        )
        return reordered_past


@add_start_docstrings(
    """
    The Falcon Model transformer with a sequence classification head on top (linear layer).

    [`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-1) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    FALCON_START_DOCSTRING,
)
class FalconForSequenceClassification(FalconPreTrainedModel):
    def __init__(self, config: FalconConfig):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = FalconModel(config)
        self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=SequenceClassifierOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1).to(logits.device)
            else:
                sequence_lengths = -1
                logger.warning(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
                )

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


@add_start_docstrings(
    """
    Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
    Named-Entity-Recognition (NER) tasks.
    """,
    FALCON_START_DOCSTRING,
)
class FalconForTokenClassification(FalconPreTrainedModel):
    def __init__(self, config: FalconConfig):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.transformer = FalconModel(config)
        if getattr(config, "classifier_dropout", None) is not None:
            classifier_dropout = config.classifier_dropout
        elif getattr(config, "hidden_dropout", None) is not None:
            classifier_dropout = config.hidden_dropout
        else:
            classifier_dropout = 0.1
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = transformer_outputs[0]
        hidden_states = self.dropout(hidden_states)
        logits = self.classifier(hidden_states)

        loss = None
        if labels is not None:
            batch_size, seq_length = labels.shape
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
            )

        if not return_dict:
            output = (logits,) + transformer_outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


@add_start_docstrings(
    """
    The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like
    SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    FALCON_START_DOCSTRING,
)
class FalconForQuestionAnswering(FalconPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.transformer = FalconModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
