o
    hx                    @   s  d Z ddlZddlZddlmZ ddlmZ ddlmZmZm	Z	m
Z
mZmZmZ ddlZddlZddlmZ ddlmZ dd	lmZmZ dd
lmZmZmZ ddlmZmZmZmZmZm Z  ddl!m"Z"m#Z#m$Z$m%Z%m&Z& e'e(Z)dZ*dZ+dZ,dZ-dZ.g dZ/dgZ0dgZ1dZ2dZ3ee&e$e%f Z4eG dd deZ5eG dd deZ6eG dd deZ7G dd dej8Z9G dd dej8Z:G dd  d ej8Z;G d!d" d"ej8Z<G d#d$ d$ej8Z=G d%d& d&ej8Z>G d'd( d(ej8Z?G d)d* d*ej8Z@G d+d, d,ej8ZAG d-d. d.ej8ZBG d/d0 d0ej8ZCd1ZDd2ZEd3ZFeFeE ZGd4ZHeHeE ZId5eE ZJd6ZKeFeH eE eK ZLd7eH eF d8 eE ZMd9ZNG d:d; d;eZOed<eDjPdd=G d>d? d?eOZQed@eDjPdd=G dAdB dBeOZRedCeDjPdd=G dDdE dEeOZSedFeDjPdGd=G dHdI dIeOZTG dJdK dKej8ZUG dLdM dMej8ZVG dNdO dOej8ZWedPeDjPdQd=G dRdS dSeOZXG dTdU dUej8ZYG dVdW dWej8ZZG dXdY dYej8Z[G dZd[ d[ej8Z\ed\eDjPdGd=eN G d]d^ d^eOZ]dS )_z PyTorch FLAVA model.    N)OrderedDict)	dataclass)AnyDictListOptionalSetTupleUnion)nn   )ACT2FN)BaseModelOutputBaseModelOutputWithPooling)PreTrainedModel find_pruneable_heads_and_indicesprune_linear_layer)ModelOutputadd_code_sample_docstringsadd_start_docstrings%add_start_docstrings_to_model_forwardloggingreplace_return_docstrings   )FlavaConfigFlavaImageCodebookConfigFlavaImageConfigFlavaMultimodalConfigFlavaTextConfigzfacebook/flava-fullzfacebook/flava-image-codebookr   r   r   )r         g$(~k@c                   @   s   e Zd ZU dZdZeej ed< dZ	ee
 ed< dZeej ed< dZee
 ed< dZeej ed< dZee
 ed< d	ee fd
dZdS )FlavaModelOutputa  
    Output from FlavaModel containing embeddings and outputs from individual encoders.

    Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
    transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
    `text_projection` layers on `image_embeddings` and `text_embeddings` respectively.

    Args:
        image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
            The image embeddings which are basically the pooled output of [`FlavaImageModel`].
        image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
            The output of the [`FlavaImageModel`].
        text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
            The text embeddings which are basically the pooled output of [`FlavaTextModel`].
        text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
            The output of the [`FlavaTextModel`].
        multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
            The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
        multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
            The output of the [`FlavaMultimodalModel`].
    Nimage_embeddingsimage_outputtext_embeddingstext_outputmultimodal_embeddingsmultimodal_outputreturnc                    s   t  fdd  D S )Nc                 3   s.    | ]}|d vr | nt  | V  qdS ))r%   r#   r'   Ngetattrto_tuple.0kself ^/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/flava/modeling_flava.py	<genexpr>e   s
    
z,FlavaModelOutput.to_tuple.<locals>.<genexpr>tuplekeysr/   r1   r/   r2   r+   d   s   zFlavaModelOutput.to_tuple)__name__
__module____qualname____doc__r"   r   torchFloatTensor__annotations__r#   r   r$   r%   r&   r'   r	   r   r+   r1   r1   r1   r2   r!   E   s   
 r!   c                   @   s   e Zd ZU dZdZeej ed< dZ	eej ed< dZ
eej ed< dZeej ed< dZeej ed< dZeej ed< d	efd
dZdS )FlavaLossesa"  Class representing pretraining losses from FLAVA model

    Args:
        mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.:
            Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
        mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.:
            Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
        itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.:
            Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
            masked pairs in FLAVA.
        global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.:
            Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
            data. This is calculated on unmasked images and texts.
        mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.:
            Masked Multimodal Modeling loss's image component calculated on paired image-text data.
        mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.:
            Masked Multimodal Modeling loss's text component calculated on paired image-text data.
    Nmimmlmitmglobal_contrastive	mmm_imagemmm_textr(   c                 C   s(   d}|   D ]}|d urd} |S q|S )NTF)values)r0   all_nonevr1   r1   r2   rF      s   zFlavaLosses.all_none)r7   r8   r9   r:   r?   r   r;   r<   r=   r@   rA   rB   rC   rD   boolrF   r1   r1   r1   r2   r>   k   s   
 r>   c                   @   s  e Zd ZU dZdZeej ed< dZ	e
ed< dZeej ed< dZee ed< dZeej ed< dZee ed< dZeej ed	< dZee ed
< dZeej ed< dZee ed< dZeej ed< dZee ed< dZeej ed< dZee ed< dZeej ed< dZeej ed< dZeej ed< dZeej ed< dZeej ed< dZeej ed< dZeej ed< dee  fddZ!dS )FlavaForPreTrainingOutputa  
    Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.

    Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
    transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
    `text_projection` layers on `image_embeddings` and `text_embeddings` respectively.

    Args:
        loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
            Total loss calculated for this model.
        loss_info (`FlavaLosses`):
            Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on
            the keys.
        image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
            The image embeddings which are basically the pooled output of [`FlavaImageModel`].
        image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
            The output of the [`FlavaImageModel`].
        text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
            The text embeddings which are basically the pooled output of [`FlavaTextModel`].
        text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
            The output of the [`FlavaTextModel`].
        multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
            The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
        multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
            The output of the [`FlavaMultimodalModel`].

        image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
            The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
            to create masked images.
        image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
            The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images.
        text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present):
            The text embeddings which are basically the pooled output of [`FlavaTextModel`].
        text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present):
            The output of the [`FlavaTextModel`].
        multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present):
            The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
        multimodal_masked_output (`BaseModelOutputWithPooling`, returned when `input_ids_masked` and `pixel_values` are present):
            The output of the [`FlavaMultimodalModel`].

        mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
                The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
                returned when `bool_masked_pos` has some of the patches masked.
        mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not):
                The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of
                the tokens masked.
        itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
                The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
        mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
                The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
                output is returned when `bool_masked_pos` has some of the patches masked.
        mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
                The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
                some of the tokens masked.
        contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
            The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
            `image_projection` and `text_projection` layers respectively. This represents the image-text similarity
            scores. This is calculated on unmasked images and texts.
        contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
            The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
            `text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
            texts.
    Nloss	loss_infor"   r#   r$   r%   r&   r'   image_masked_embeddingsimage_masked_outputtext_masked_embeddingstext_masked_outputmultimodal_masked_embeddingsmultimodal_masked_output
mim_logits
mlm_logits
itm_logitscontrastive_logits_per_imagecontrastive_logits_per_textmmm_image_logitsmmm_text_logitsr(   c                    s$   g dt  fdd  D S )N)r%   r#   r'   rO   rM   rQ   c                 3   s.    | ]}|vr | nt  | V  qd S Nr)   r,   r0   transformer_outputsr1   r2   r3      s   , z5FlavaForPreTrainingOutput.to_tuple.<locals>.<genexpr>r4   r/   r1   rZ   r2   r+      s   z"FlavaForPreTrainingOutput.to_tuple)"r7   r8   r9   r:   rJ   r   r;   r<   r=   rK   r>   r"   r#   r   r$   r%   r&   r'   rL   rM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   r	   r   r+   r1   r1   r1   r2   rI      s0   
 @rI   c                	       sx   e Zd ZdZddededdf fddZd	ejd
e	de	dejfddZ
		ddejdeej dedejfddZ  ZS )FlavaImageEmbeddingszb
    Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
    Fconfiguse_mask_tokenr(   Nc                    s   t    |p	|j}ttdd|j| _|r#ttdd|jnd | _t	|j
|j|j|jd| _| jj}ttd|d |j| _t|j| _|| _d S )Nr   )
image_size
patch_sizenum_channels	embed_dim)super__init__
mask_tokenr   	Parameterr;   zeroshidden_size	cls_tokenPatchEmbeddingsr_   r`   ra   patch_embeddingsnum_patchesposition_embeddingsDropouthidden_dropout_probdropoutr]   )r0   r]   r^   rl   	__class__r1   r2   rd      s   

 
zFlavaImageEmbeddings.__init__
embeddingsheightwidthc              	   C   sp  |j d d }| jj d d }||kr||kr| jS | jdddf }| jddddf }|j d }|| jj }	|| jj }
|	d |
d }	}
tjj|dtt	
|tt	
||dddd|	t	
| |
t	
| fdd	d
}t|	|j d kst|
|j d krtdt|	t|
f d|j d |j d f d|dddddd|}tj|d|fddS )a"  
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
        resolution images.

        Source:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/image_transformer.py#L174
        r   Nr   g?r      bicubicF)scale_factormodealign_cornerszNumber of patches for images (z/) don't match the shape of position embedding ()dim)shaperm   r]   r`   r   
functionalinterpolatereshapeintmathsqrtpermute
ValueErrorviewr;   cat	unsqueeze)r0   rs   rt   ru   npatchnum_posclass_pos_embedpatch_pos_embedr   num_h_patchesnum_w_patchesr1   r1   r2   interpolate_pos_encoding  s0   	
.$z-FlavaImageEmbeddings.interpolate_pos_encodingpixel_valuesbool_masked_posr   c                 C   s   |j \}}}}| j||d}| \}}	}
|d urB| j||	d}| dkr0||dd}|d|}|d|  ||  }| j	|dd}t
j||fdd}|r_|| ||| }n|| j }| |}|S )N)r   rv   r   r         ?r   r~   )r   rk   sizere   expandr   r   r   type_asri   r;   r   r   rm   rp   )r0   r   r   r   
batch_sizera   rt   ru   rs   seq_len_mask_tokensmask
cls_tokensr1   r1   r2   forward/  s    

zFlavaImageEmbeddings.forwardF)NF)r7   r8   r9   r:   r   rH   rd   r;   Tensorr   r   r   
BoolTensorr   __classcell__r1   r1   rq   r2   r\      s    &r\   c                	       sh   e Zd ZdZ				ddedeeeeef f ded	ef fd
dZddej	de
dej	fddZ  ZS )rj   z#
    Image to Patch Embedding.
          r   r    r_   r`   ra   rb   c                    s   t    t|tjjs||f}t|tjjs||f}|d |d  |d |d   }|| _|| _|| _t	j
||||d| _d S )Nr   r   )kernel_sizestride)rc   rd   
isinstancecollectionsabcIterabler_   r`   rl   r   Conv2d
projection)r0   r_   r`   ra   rb   rl   rq   r1   r2   rd   X  s   
 zPatchEmbeddings.__init__Fr   r   r(   c              
   C   sx   |j \}}}}|s.|| jd ks|| jd kr.td| d| d| jd  d| jd  d	| |ddd}|S )Nr   r   zInput image size (*z) doesn't match model (z).rw   )r   r_   r   r   flatten	transpose)r0   r   r   r   ra   rt   ru   xr1   r1   r2   r   k  s   zPatchEmbeddings.forward)r   r   r   r    r   )r7   r8   r9   r:   r   r
   r	   rd   r;   r   rH   r   r   r1   r1   rq   r2   rj   S  s     $rj   c                       sP   e Zd ZdZ fddZ			d
deej deej deej fdd	Z  Z	S )FlavaTextEmbeddingszGConstruct the embeddings from word, position and token_type embeddings.c                    s   t    tj|j|j|jd| _t|j|j| _	t|j
|j| _tj|j|jd| _t|j| _t|dd| _| jdt|jddd | jd	tj| j tjd
dd d S )N)padding_idxepsposition_embedding_typeabsoluteposition_ids)r   rv   F)
persistenttoken_type_ids)dtype)rc   rd   r   	Embedding
vocab_sizerh   pad_token_idword_embeddingsmax_position_embeddingsrm   type_vocab_sizetoken_type_embeddings	LayerNormlayer_norm_epsrn   ro   rp   r*   r   register_bufferr;   aranger   rg   r   r   longr0   r]   rq   r1   r2   rd   z  s   

zFlavaTextEmbeddings.__init__N	input_idsr   r   c                 C   s   |  }|d }|d u r| jd d d |f }|d u rAt| dr6| jd d d |f }||d |}|}ntj|tj| jjd}| 	|}| 
|}	||	 }
| jdkr]| |}|
|7 }
| |
}
| |
}
|
S )Nr   r   r   )r   devicer   )r   r   hasattrr   r   r;   rg   r   r   r   r   r   rm   r   rp   )r0   r   r   r   input_shape
seq_lengthbuffered_token_type_ids buffered_token_type_ids_expandedinputs_embedsr   rs   rm   r1   r1   r2   r     s&   






zFlavaTextEmbeddings.forward)NNN)
r7   r8   r9   r:   rd   r   r;   r   r   r   r1   r1   rq   r2   r   w  s    r   c                       s   e Zd Zdeddf fddZdejdejfddZ				dd
ejdeej deej de	de
eejejf eej f f
ddZ  ZS )FlavaSelfAttentionr]   r(   Nc                    s   t    |j|j dkr t|ds td|jf d|j d|j| _t|j|j | _| j| j | _t	j
|j| j|jd| _t	j
|j| j|jd| _t	j
|j| j|jd| _t	|j| _d S )Nr   embedding_sizezThe hidden size z4 is not a multiple of the number of attention heads .bias)rc   rd   rh   num_attention_headsr   r   r   attention_head_sizeall_head_sizer   Linearqkv_biasquerykeyvaluern   attention_probs_dropout_probrp   r   rq   r1   r2   rd     s   
zFlavaSelfAttention.__init__r   c                 C   s6   |  d d | j| jf }|j| }|ddddS )Nrv   r   rw   r   r   )r   r   r   r   r   )r0   r   new_x_shaper1   r1   r2   transpose_for_scores  s   
z'FlavaSelfAttention.transpose_for_scoresFhidden_statesattention_mask	head_maskoutput_attentionsc                 C   s   |  |}| | |}| | |}| |}t||dd}	|	t| j	 }	|d ur4|	| }	t
jj|	dd}
t
jj|	dd}
| |
}
|d urQ|
| }
t|
|}|dddd }| d d | jf }|j| }|rz||
f}|S |f}|S )Nrv   r|   r~   r   rw   r   r   )r   r   r   r   r;   matmulr   r   r   r   r   r   softmaxrp   r   
contiguousr   r   r   )r0   r   r   r   r   mixed_query_layer	key_layervalue_layerquery_layerattention_scoresattention_probscontext_layernew_context_layer_shapeoutputsr1   r1   r2   r     s*   



zFlavaSelfAttention.forwardNNF)r7   r8   r9   FlavaPossibleConfigsrd   r;   r   r   r   rH   r
   r	   r   r   r1   r1   rq   r2   r     s"    r   c                       sF   e Zd ZdZdeddf fddZdejdejdejfd	d
Z  Z	S )FlavaSelfOutputz
    The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other
    models), due to the layernorm applied before each block.
    r]   r(   Nc                    s.   t    t|j|j| _t|j| _d S rY   )	rc   rd   r   r   rh   densern   ro   rp   r   rq   r1   r2   rd        
zFlavaSelfOutput.__init__r   input_tensorc                 C      |  |}| |}|S rY   r   rp   r0   r   r   r1   r1   r2   r         

zFlavaSelfOutput.forward)
r7   r8   r9   r:   r   rd   r;   r   r   r   r1   r1   rq   r2   r     s    $r   c                       s   e Zd Zdeddf fddZdee ddfddZ				dd
ej	de
ej	 de
ej	 dedeeej	ej	f eej	 f f
ddZ  ZS )FlavaAttentionr]   r(   Nc                    s*   t    t|| _t|| _t | _d S rY   )rc   rd   r   	attentionr   outputsetpruned_headsr   rq   r1   r2   rd     s   


zFlavaAttention.__init__headsc                 C   s   t |dkrd S t|| jj| jj| j\}}t| jj|| j_t| jj|| j_t| jj	|| j_	t| j
j|dd| j
_| jjt | | j_| jj| jj | j_| j|| _d S )Nr   r   r~   )lenr   r   r   r   r   r   r   r   r   r   r   r   union)r0   r   indexr1   r1   r2   prune_heads  s   zFlavaAttention.prune_headsFr   r   r   r   c                 C   s8   | j ||||d}| |d |}|f|dd   }|S N)r   r   r   r   r   )r   r   )r0   r   r   r   r   self_outputsattention_outputr   r1   r1   r2   r      s   zFlavaAttention.forwardr   )r7   r8   r9   r   rd   r   r   r  r;   r   r   rH   r
   r	   r   r   r1   r1   rq   r2   r     s"    r   c                       s<   e Zd Zdeddf fddZdejdejfddZ  ZS )	FlavaIntermediater]   r(   Nc                    sD   t    t|j|j| _t|jt	rt
|j | _d S |j| _d S rY   )rc   rd   r   r   rh   intermediate_sizer   r   
hidden_actstrr   intermediate_act_fnr   rq   r1   r2   rd   2  s
   
zFlavaIntermediate.__init__r   c                 C   r   rY   )r   r  r0   r   r1   r1   r2   r   ;  r   zFlavaIntermediate.forward	r7   r8   r9   r   rd   r;   r   r   r   r1   r1   rq   r2   r  1  s    	r  c                       sB   e Zd Zdeddf fddZdejdejdejfdd	Z  ZS )
FlavaOutputr]   r(   Nc                    s.   t    t|j|j| _t|j| _	d S rY   )
rc   rd   r   r   r	  rh   r   rn   ro   rp   r   rq   r1   r2   rd   C  r   zFlavaOutput.__init__r   r   c                 C   s    |  |}| |}|| }|S rY   r   r   r1   r1   r2   r   I  s   

zFlavaOutput.forwardr  r1   r1   rq   r2   r  B  s    $r  c                       sx   e Zd ZdZdeddf fddZ			ddejd	eej d
eej de	de
eejejf eej f f
ddZ  ZS )
FlavaLayerz?This corresponds to the Block class in the timm implementation.r]   r(   Nc                    sb   t    |j| _d| _t|| _t|| _t|| _	t
j|j|jd| _t
j|j|jd| _d S Nr   r   )rc   rd   chunk_size_feed_forwardseq_len_dimr   r   r  intermediater  r   r   r   rh   r   layernorm_beforelayernorm_afterr   rq   r1   r2   rd   U  s   



zFlavaLayer.__init__Fr   r   r   r   c           	      C   sb   | j | ||||d}|d }|dd  }|| }| |}| |}| ||}|f| }|S r  )r   r  r  r  r   )	r0   r   r   r   r   self_attention_outputsr  r   layer_outputr1   r1   r2   r   a  s   


zFlavaLayer.forwardr   )r7   r8   r9   r:   r   rd   r;   r   r   rH   r
   r	   r   r   r1   r1   rq   r2   r  R  s"    r  c                       sn   e Zd Zdeddf fddZ					ddejd	eej d
eej dededede	e
ef fddZ  ZS )FlavaEncoderr]   r(   Nc                    s:   t     | _t fddt jD | _d| _d S )Nc                    s   g | ]}t  qS r1   )r  r-   r   r]   r1   r2   
<listcomp>  s    z)FlavaEncoder.__init__.<locals>.<listcomp>F)	rc   rd   r]   r   
ModuleListrangenum_hidden_layerslayergradient_checkpointingr   rq   r  r2   rd     s   
 
zFlavaEncoder.__init__FTr   r   r   r   output_hidden_statesreturn_dictc                 C   s   |rdnd }|r
dnd }t | jD ]:\}	}
|r||f }|d ur$||	 nd }| jr7| jr7| |
j||||}n|
||||}|d }|rK||d f }q|rS||f }|satdd |||fD S t|||dS )Nr1   r   r   c                 s   s    | ]	}|d ur|V  qd S rY   r1   )r-   rG   r1   r1   r2   r3         z'FlavaEncoder.forward.<locals>.<genexpr>)last_hidden_stater   
attentions)	enumerater   r!  training_gradient_checkpointing_func__call__r5   r   )r0   r   r   r   r   r"  r#  all_hidden_statesall_self_attentionsilayer_modulelayer_head_masklayer_outputsr1   r1   r2   r     s4   	

zFlavaEncoder.forward)NNFFT)r7   r8   r9   r   rd   r;   r   r   rH   r
   r5   r   r   r   r1   r1   rq   r2   r    s,    	
r  c                       s2   e Zd Zdef fddZdejfddZ  ZS )FlavaPoolerr]   c                    s*   t    t|j|j| _t | _d S rY   )rc   rd   r   r   rh   r   Tanh
activationr   rq   r1   r2   rd     s   
zFlavaPooler.__init__r   c                 C   s(   |d d df }|  |}| |}|S Nr   )r   r3  )r0   r   first_token_tensorpooled_outputr1   r1   r2   r     s   

zFlavaPooler.forwardr  r1   r1   rq   r2   r1    s    r1  aD  
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`{config}`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
a  
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
            [What are attention masks?](../glossary#attention-mask)

        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.

        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
a;  
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`FlavaImageProcessor.__call__`] for details.

        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).

        interpolate_pos_encoding (`bool`, *optional*):
            Whether to interpolate the pre-trained position encodings.
a  
    Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
            IDs?](../glossary#input-ids)

        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            [What are token type IDs?](../glossary#token-type-ids)
z
    Args:
        hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`):
            The concatenated hidden states of unimodal encoders.
z
    Args:
        skip_multimodal_encoder (*bool*, *optional*):
            Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.
a  
    Args:
        input_ids_masked (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task
            to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with
            [`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)

a  
        image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*):
            Mask to avoid performing attention on padding token indices specifically for images. Mask values selected
            in `[0, 1]`:
            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
            [What are attention masks?](../glossary#attention-mask)

        skip_unmasked_multimodal_encoder (*bool*, *optional*):
            Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked
            multimodal embeddings or outputs as of now.

        mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
            Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction).
            Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with
            indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0,
            ..., text_config.vocab_size - 1]`.

        mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*):
            Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ...,
            image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only
            computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are
            generated automatically using the image codebook assigned to the model. By default, it uses
            [`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels.

        itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
            Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
            The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well.

        return_loss (`bool`, *optional*, default to None):
            Whether to return calculated loss or not.
z
    Parameters:
        image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will
            be initialized using the image_codebook_config defined in the config first as the first parameter.
c                   @   s>   e Zd ZdZeZdZdZdee	j
e	je	jf ddfddZdS )	FlavaPreTrainedModelz
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    flavaTmoduler(   Nc                 C   s   t |tjtjfr#|jjjd| jjd |j	dur!|j	j
  dS dS t |tjrF|jjjd| jjd |jdurD|jj|j 
  dS dS t |tjr[|j	j
  |jjd dS dS )zInitialize the weightsg        )meanstdNr   )r   r   r   r   weightdatanormal_r]   initializer_ranger   zero_r   r   r   fill_)r0   r9  r1   r1   r2   _init_weights\  s   

z"FlavaPreTrainedModel._init_weights)r7   r8   r9   r:   r   config_classbase_model_prefixsupports_gradient_checkpointingr
   r   r   r   r   rB  r1   r1   r1   r2   r7  R  s    &r7  zeThe bare FLAVA Image Model transformer outputting raw hidden-states without any specific head on top.r  c                       s  e Zd ZeZdZdZddedef fddZde	j
fd	d
Zde	j
fddZdeeee f ddfddZeedeeeeded								ddeej deej dee deej deej dee dee dee deeef fddZ  Z S ) FlavaImageModelzflava.image_modelr   Tr]   add_pooling_layerc                    X   t  | || _t|| _t|| _tj|j	|j
d| _|r#t|nd | _|   d S Nr   )rc   rd   r]   r\   rs   r  encoderr   r   rh   r   	layernormr1  pooler	post_initr0   r]   rG  rq   r1   r2   rd   w  s   

zFlavaImageModel.__init__r(   c                 C      | j jS rY   rs   rk   r/   r1   r1   r2   get_input_embeddings     z$FlavaImageModel.get_input_embeddingsr   c                 C      || j _d S rY   rP  r0   r   r1   r1   r2   set_input_embeddings     z$FlavaImageModel.set_input_embeddingsheads_to_pruneNc                 C   *   |  D ]\}}| jj| j| qdS z
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        NitemsrJ  r   r   r  r0   rW  r   r   r1   r1   r2   _prune_heads     zFlavaImageModel._prune_headsbatch_size, image_num_patchesvision)
checkpointoutput_typerC  modalityexpected_outputr   r   r   r   r   r"  r#  c	                 C   s   |d ur|n| j j}|d ur|n| j j}|d ur|n| j j}|d u r&td| || j j}| j|||d}	| j|	|||||d}
|
d }| 	|}| j
d urT| 
|nd }|sb||f|
dd   S t|||
j|
jdS )Nz You have to specify pixel_values)r   r   r   r   r   r"  r#  r   r   r%  pooler_outputr   r&  )r]   r   r"  use_return_dictr   get_head_maskr  rs   rJ  rK  rL  r   r   r&  )r0   r   r   r   r   r   r   r"  r#  embedding_outputencoder_outputssequence_outputr6  r1   r1   r2   r     s:   
zFlavaImageModel.forwardTNNNNNNNN)!r7   r8   r9   r   rC  rD  main_input_namerH   rd   r   ModulerQ  rU  r   r   r   r]  r   FLAVA_IMAGE_INPUTS_DOCSTRINGformatr   _CHECKPOINT_FOR_DOCr   !_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC_EXPECTED_IMAGE_OUTPUT_SHAPEr   r;   r   r   r
   r5   r   r   r1   r1   rq   r2   rF  m  sV    		

rF  zdThe bare FLAVA Text Model transformer outputting raw hidden-states without any specific head on top.c                       s   e Zd ZeZdZddedef fddZdefdd	Z	d
e
jfddZdeeee f ddfddZeedeeeed								ddeej deej deej deej deej dee dee dee deeef fddZ  ZS )FlavaTextModelzflava.text_modelTr]   rG  c                    rH  rI  )rc   rd   r]   r   rs   r  rJ  r   r   rh   r   rK  r1  rL  rM  rN  rq   r1   r2   rd     s   

zFlavaTextModel.__init__r(   c                 C   rO  rY   rs   r   r/   r1   r1   r2   rQ    rR  z#FlavaTextModel.get_input_embeddingsr   c                 C   rS  rY   rw  rT  r1   r1   r2   rU    rV  z#FlavaTextModel.set_input_embeddingsrW  Nc                 C   rX  rY  rZ  r\  r1   r1   r2   r]    r^  zFlavaTextModel._prune_headsbatch_size, text_seq_lengthra  rb  rC  r   r   r   r   r   r   r"  r#  c	                 C   s  |d ur|n| j j}|d ur|n| j j}|d ur|n| j j}|d u r&td| }	|d u r6tj|	|jd}| 	|| j j
}| ||	|j}
| j|||d}| j||
||||d}|d }| |}| jd url| |nd }|sz||f|dd   S t|||j|jdS )NzYou have to specify input_idsr   )r   r   r   re  r   r   rf  )r]   r   r"  rh  r   r   r;   onesr   ri  r  get_extended_attention_maskrs   rJ  rK  rL  r   r   r&  )r0   r   r   r   r   r   r   r"  r#  r   extended_attention_maskrj  rk  rl  r6  r1   r1   r2   r     sJ   
zFlavaTextModel.forwardrm  rn  )r7   r8   r9   r   rC  rD  rH   rd   rj   rQ  r   rp  rU  r   r   r   r]  r   FLAVA_TEXT_INPUTS_DOCSTRINGrr  r   rs  r    _CONFIG_CLASS_FOR_TEXT_MODEL_DOCr   r;   r   r
   r5   r   r   r1   r1   rq   r2   rv    sP    	

rv  zjThe bare FLAVA Multimodal Model transformer outputting raw hidden-states without any specific head on top.c                       s   e Zd ZeZdZdZddef fddZdee	e
e	 f dd	fd
dZeedeeeed										ddejdeej deej dee dee dee deeef fddZ  ZS )FlavaMultimodalModelzflava.multimodal_modelr   Tr]   c                    sv   t  | || _| jj| _| jrttdd|j| _	t
|| _tj|j|jd| _|r2t|nd | _|   d S r  )rc   rd   r]   use_cls_tokenr   rf   r;   rg   rh   ri   r  rJ  r   r   rK  r1  rL  rM  rN  rq   r1   r2   rd   C  s   

zFlavaMultimodalModel.__init__rW  r(   Nc                 C   rX  rY  rZ  r\  r1   r1   r2   r]  Q  r^  z!FlavaMultimodalModel._prune_heads,batch_size, image_num_patches + text_seq_lenry  r   r   r   r"  r#  c                 C   s&  |d ur|n| j j}|d ur|n| j j}|d ur|n| j j}| \}}}	| jr=| j|dd}
tj	|
|fdd}|d7 }|d u rKtj
||f|jd}| || j j}| |||f|j}| j||||||d}|d }| |}| jd ur{| |nd }|s||f|dd   S t|||j|jdS )Nrv   r   r~   rz  re  r   rf  )r]   r   r"  rh  r   r  ri   r   r;   r   r{  r   ri  r  r|  rJ  rK  rL  r   r   r&  )r0   r   r   r   r   r"  r#  r   r   r   r   r}  rk  rl  r6  r1   r1   r2   r   Y  sD   
zFlavaMultimodalModel.forwardrm  )NNNNN)r7   r8   r9   r   rC  rD  ro  rd   r   r   r   r]  r   !FLAVA_MULTIMODAL_INPUTS_DOCSTRINGrr  r   rs  r   &_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOCr;   r   r   rH   r
   r5   r   r   r1   r1   rq   r2   r  9  sD    
r  z_The bare FLAVA Model transformer outputting raw hidden-states without any specific head on top.r   c                       s  e Zd ZeZdef fddZeed							dde	e
j de	e
j de	e
j d	e	e
j d
e	e de	e de	e de
jfddZeed								dde	e
j de	e
j de	e de	e
j de	e
j d
e	e de	e de	e de
jfddZeedeeed											d de	e
j de	e
j de	e
j de	e
j de	e
j d	e	e
j de	e
j de	e d
e	e dede	e deeef fddZ  ZS )!
FlavaModelr]   c                    s0  t  | t|jtstdt|j dt|jts(tdt|j dt|j	t
s;tddt|j	 d |j}|j}|j	}|j| _|j| _|j| _|j| _t|| _t|| _t|| _t| j| j| _t| j| j| _tt| jj| _t| j| j| _ t| j| j| _!| "  d S )NzLconfig.text_config is expected to be of type FlavaTextConfig but is of type r   zNconfig.image_config is expected to be of type FlavaImageConfig but is of type zMconfig.multimodal_config is expected to be of type FlavaMultimodalConfig but zis of type )#rc   rd   r   text_configr   r   typeimage_configr   multimodal_configr   projection_dimrh   text_hidden_sizeimage_hidden_sizemm_hidden_sizerv  
text_modelrF  image_modelr  multimodal_modelr   r   image_projectiontext_projectionrf   r;   tensorr]   logit_scale_init_valuelogit_scaleimage_to_mm_projectiontext_to_mm_projectionrM  )r0   r]   r  r  r  rq   r1   r2   rd     sF   


zFlavaModel.__init__rx  Nr   r   r   r   r   r"  r#  r(   c              	   C   s8   d t | j|||||||d}|d }	| |	}
|
S )Na  
        Returns:
            text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
            applying the projection layer to the pooled output of [`FlavaTextModel`].

        Examples:

        ```python
        >>> from transformers import AutoProcessor, FlavaModel

        >>> model = FlavaModel.from_pretrained("{0}")
        >>> processor = AutoProcessor.from_pretrained("{0}")

        >>> inputs = processor(
        ...     text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt"
        ... )
        >>> text_features = model.get_text_features(**inputs)
        ```)r   r   r   r   r   r"  r#  r   )rr  rs  r  r  )r0   r   r   r   r   r   r"  r#  text_outputsr6  text_featuresr1   r1   r2   get_text_features  s   

zFlavaModel.get_text_featuresr_  r   r   r   r   c	              
   C   s:   d t | j||||||||d}	|	d }
| |
}|S )Na  
        Returns:
            image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
            applying the projection layer to the pooled output of [`FlavaImageModel`].

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, FlavaModel

        >>> model = FlavaModel.from_pretrained("{0}")
        >>> processor = AutoProcessor.from_pretrained("{0}")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="pt")

        >>> image_features = model.get_image_features(**inputs)
        ```)r   r   r   r   r   r"  r   r#  r   )rr  rs  r  r  )r0   r   r   r   r   r   r   r"  r#  image_outputsr6  image_featuresr1   r1   r2   get_image_features  s   
zFlavaModel.get_image_featuresr  rb  rC  Timage_attention_maskskip_multimodal_encoderc              	   C   s*  |dur|n| j j}|
stdd}d}d}d}|dur7| j||||	|
|d}|d |d }}| |d }d}d}d}d}|dur_| j|||||	|
|d}|d |d }}| |d }d}d}|dur|dur|stj||gdd	}| j	||d
}|d }|s||||||fS t
||||||dS )a  
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, FlavaModel

        >>> model = FlavaModel.from_pretrained("facebook/flava-full")
        >>> processor = AutoProcessor.from_pretrained("facebook/flava-full")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True)

        >>> outputs = model(**inputs)

        >>> image_embeddings = outputs.image_embeddings
        >>> text_embeddings = outputs.text_embeddings
        >>> multimodal_embeddings = outputs.multimodal_embeddings

        >>> outputs.image_embeddings.shape
        torch.Size([1, 197, 768])

        >>> text_embeddings.shape
        torch.Size([1, 7, 768])

        >>> multimodal_embeddings.shape
        torch.Size([1, 205, 768])
        ```
        NzRFLAVA model requires hidden states to work. Please set `output_hidden_states=True`)r   r   r   r   r"  r#  r   rw   rv   )r   r   r   r   r   r"  r#  r   r~   )r#  )r"   r#   r$   r%   r&   r'   )r]   r#  r   r  r  r  r  r;   r   r  r!   )r0   r   r   r   r   r   r   r  r  r   r"  r#  r"   image_statesimage_mm_projectionr#   r$   text_statestext_mm_projectionr%   r&   r'   multimodal_inputr1   r1   r2   r   +  sp   5
	zFlavaModel.forward)NNNNNNNrn  )NNNNNNNNNTN)r7   r8   r9   r   rC  rd   r   r~  rr  r   r;   r   rH   r<   r  rq  r   r  FLAVA_MODEL_INPUTS_DOCSTRINGr   r!   
LongTensorr
   r	   r  r   r   r1   r1   rq   r2   r    s    +	+	
1
	

r  c                       s<   e Zd Zdedef fddZdejdejfddZ  ZS )	FlavaImageCodebookResPathin_sizeout_sizec                    s   t    |d }t }t |d< tj||ddd|d< t |d< tj||ddd|d< t |d	< tj||ddd|d
< t |d< tj||ddd|d< t|| _d S )N   relu_1r   r   r   paddingconv_1relu_2conv_2relu_3conv_3relu_4r   conv_4)rc   rd   r   r   ReLUr   
Sequentialpath)r0   r  r  kwargshid_sizer  rq   r1   r2   rd     s   
z"FlavaImageCodebookResPath.__init__r   r(   c                 C   
   |  |S rY   )r  r0   r   r1   r1   r2   r        
z!FlavaImageCodebookResPath.forward	r7   r8   r9   r   rd   r;   r   r   r   r1   r1   rq   r2   r    s    r  c                       s@   e Zd Zdededef fddZdejdejfdd	Z  ZS )
FlavaImageCodebookBlockr  r  
num_layersc                    sP   t    d|d  | _||krtj||ddd| _nt | _t||| _d S )Nr   rw   r   r  )	rc   rd   	post_gainr   r   id_pathIdentityr  res_path)r0   r  r  r  r  rq   r1   r2   rd     s   

z FlavaImageCodebookBlock.__init__r   r(   c                 C   s   |  || j| |  S rY   )r  r  r  r  r1   r1   r2   r     s   zFlavaImageCodebookBlock.forwardr  r1   r1   rq   r2   r    s    r  c                       sJ   e Zd Zddededededef
 fddZd	ejd
ejfddZ  Z	S )FlavaImageCodebookLayerGroupT
num_blocksr  r  r  use_poolc                    s   t    t }t|D ]!}|dkr t||||d|d  < qt||||d|d  < q|r8tjdd|d< t|| _d S )Nr   block_r   rw   )r   pool)	rc   rd   r   r  r  r   	MaxPool2dr  group)r0   r  r  r  r  r  blocksr-  rq   r1   r2   rd     s   
z%FlavaImageCodebookLayerGroup.__init__r   r(   c                 C   r  rY   )r  r  r1   r1   r2   r     r  z$FlavaImageCodebookLayerGroup.forwardrm  )
r7   r8   r9   r   rH   rd   r;   r   r   r   r1   r1   rq   r2   r    s    $r  a"  
    The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used
    to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use
    `get_codebook_indices` to get image tokens for an image.
    r   c                       sx   e Zd ZdZeZdZdZdedef fddZ	de
jde
jfd	d
Zde
jde
jfddZde
jde
jfddZ  ZS )FlavaImageCodebook r   Fr]   r  c                    sd  t  | || _|j| _|j| _|j| _|j| _|j| _| j| j }t }t	
 |d< t	jd| j | jddd|d< t }t	j| jd| j ddd|d	< t| j|d| j d| j |d
< t| j|d| j d| j |d< t| j|d| j d| j |d< t| j|d| j d| j dd|d< t	||d< t	|| _|   | jjr|  D ]}d|_qd S d S )Nrelu   r   r   r  conv   r   inputgroup_1rw   group_2r  group_3F)r  group_4r   )rc   rd   r]   
num_groupsinput_channelsnum_blocks_per_grouprh   r   r   r   r  r   r  r  r  rM  freeze
parametersrequires_grad)r0   r]   r  r  output_blocksr  paramrq   r1   r2   rd     sB   
zFlavaImageCodebook.__init__r(   c                 C   s"   d t | |}tj|ddS )Na  
        Args:
            pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
                Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
                `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.

        Examples:
        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoImageProcessor, FlavaImageCodebook

        >>> model = FlavaImageCodebook.from_pretrained("{0}")
        >>> image_processor = AutoImageProcessor.from_pretrained("{0}")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
        >>> inputs = dict(pixel_values=inputs.codebook_pixel_values)

        >>> outputs = model.get_codebook_indices(**inputs)
        ```
        r   )axis)rr  _CHECKPOINT_FOR_CODEBOOK_DOCr  r;   argmaxr0   r   z_logitsr1   r1   r2   get_codebook_indices  s   
z'FlavaImageCodebook.get_codebook_indicesc                 C   s   |  |}tjdd|S )Nr   r~   )r  r   Softmaxr  r1   r1   r2   get_codebook_probs2  s   
z%FlavaImageCodebook.get_codebook_probsc                 C   s`   d t t|jdkrtd|j d|jd | jkr+td|jd  d| j | |S )Na  
        Args:
            pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
                Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
                `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoImageProcessor, FlavaImageCodebook

        >>> model = FlavaImageCodebook.from_pretrained("{0}")
        >>> image_processor = AutoImageProcessor.from_pretrained("{0}")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
        >>> inputs = dict(pixel_values=inputs.codebook_pixel_values)

        >>> outputs = model(**inputs)
        >>> print(outputs.shape)
        (1, 196)
        ```
        r  zinput shape z
 is not 4dr   z
input has z channels but model built for )rr  r  r  r   r   r  r  )r0   r   r1   r1   r2   r   6  s   
zFlavaImageCodebook.forward)r7   r8   r9   rD  r   rC  ro  rE  r   rd   r;   r   r  r  r<   r   r   r1   r1   rq   r2   r    s    	,r  c                       $   e Zd Z fddZdd Z  ZS )FlavaPredictionHeadTransformc                    sV   t    t|j|j| _t|jtrt	|j | _
n|j| _
tj|j|jd| _d S rI  )rc   rd   r   r   rh   r   r   r
  r  r   transform_act_fnr   r   r   rq   r1   r2   rd   Z  s   
z%FlavaPredictionHeadTransform.__init__c                 C   s"   |  |}| |}| |}|S rY   )r   r  r   r  r1   r1   r2   r   c  s   


z$FlavaPredictionHeadTransform.forwardr7   r8   r9   rd   r   r   r1   r1   rq   r2   r  Y  s    	r  c                       s&   e Zd Zd fdd	Zdd Z  ZS )FlavaMaskedPredictionHeadNc                    sb   t    || _t|| _tj|j|jdd| _	t
t|j| _|d ur*|| j	_| j| j	_d S )NFr   )rc   rd   r]   r  	transformr   r   rh   r   decoderrf   r;   rg   r   r<  )r0   r]   r<  rq   r1   r2   rd   k  s   

z"FlavaMaskedPredictionHead.__init__c                 C   r   rY   )r  r  r  r1   r1   r2   r   w     

z!FlavaMaskedPredictionHead.forwardrY   r  r1   r1   rq   r2   r  j  s    r  c                       r  )FlavaITMHeadc                    s.   t    || _t|| _t|jd| _d S )Nrw   )	rc   rd   r]   r1  rL  r   r   rh   seq_relationshipr   rq   r1   r2   rd   ~  s   

zFlavaITMHead.__init__c                 C   r   rY   )rL  r  r  r1   r1   r2   r     r  zFlavaITMHead.forwardr  r1   r1   rq   r2   r  }  s    r  c                       r  )FlavaGlobalContrastiveHeadc                    s   t    || _|j| _d S rY   )rc   rd   r]   global_backprop_contrastiver   rq   r1   r2   rd     s   
z#FlavaGlobalContrastiveHead.__init__c                    s2  t |}t j rt j s!t j d jd} g}g}nQ d}t j }	| j	r?t jj
j }t jj
j}n$fddt|	D } fddt|	D }t j|  t j| |t j  t j| jd }t |}t |}t  |dd| }
t |dd| }|
||fS )Nr   rz  c                       g | ]}t  qS r1   r;   
zeros_liker  )r$   r1   r2   r        z6FlavaGlobalContrastiveHead.forward.<locals>.<listcomp>c                    r  r1   r  r  )r"   r1   r2   r    r  r   )r;   expdistributedis_availableis_initializedr   r   r   get_world_sizer  r   r   
all_gatherr  get_rankr   r   r   )r0   r"   r$   r  temperaturelabelsimage_embeddings_alltext_embeddings_alllocal_batch_size
world_sizelogits_per_imagelogits_per_textr1   )r"   r$   r2   r     s,   





z"FlavaGlobalContrastiveHead.forwardr  r1   r1   rq   r2   r    s    r  zk
    The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs.
    c                )       s:  e Zd Zg dZd"dedeej f fddZde	j
fdd	Zeed
deeed																	d#dee	j dee	j dee	j dee	j dee	j
 dee	j
 dee	j
 dee	j dee	j
 dedee	j
 dee	j
 dee	j
 dee dedee dee deee	j
 ef f$d d!Z  ZS )$FlavaForPreTraining)zmmm_text_head.decoder.biaszmmm_image_head.decoder.biaszmlm_head.decoder.biaszmim_head.decoder.biasNr]   image_codebookc                    s   t  | t|| _|| _| jd u r|jrt|j| _t|j	| _
t|j| _t|| _t|j	| _t|j| _t|| _|j	j| _|jj| _|j| _|j| _|j| _|j| _|j| _|j| _|j| _|j| _|   d S rY   )rc   rd   r  r8  r  init_codebookr  image_codebook_configr  r  mim_headr  mlm_headr  itm_headmmm_image_headmmm_text_headr  global_contrastive_headr   image_vocab_sizetext_vocab_size
mlm_weight
mim_weightglobal_contrastive_weightce_ignore_index
itm_weightmmm_image_weightmmm_text_weight skip_unmasked_multimodal_encoderrM  )r0   r]   r  rq   r1   r2   rd     s,   




zFlavaForPreTraining.__init__r   c                 C   s"   |  dkr||dd}|S )Nrw   r   rv   )r   r   r   r  r1   r1   r2   _resize_to_2d  s   z!FlavaForPreTraining._resize_to_2dzbatch_size, text_seq_lenr_  r  Tr   input_ids_maskedr   codebook_pixel_valuesr   r   r   r   r  r  
mlm_labels
mim_labels
itm_labelsr   r"  r#  return_lossr(   c           6      C   s  |dur|n| j j}|dur|n| j j}|
dur|
n| j}
|du r,|dur,td |}| j||||||	|
||dd
}| j|||||	|||dd	}d}|j}|j}|j}|j}|j	}d } } } } } }} d }! }" }#}$d }% }&}'|dus~|dur|du r|r| j
du rtd|du rtd| j
|}| jdkr	|dur	|du r	|}(|dur| |}| |}| j||d< |(dd|d	 dddf }(|| j})||) }*|(|)ddf }(| |(}!|rtj|!d
| j|*d
}|| j9 }n| |(}!| jdkrj|durj|du rj|}+|dure| |}|+dd|d	 dddf }+|| j})||) },|+|)ddf }+| |+}"|rdtj|"d
| j|,d
}|| j9 }n| |+}"| jdkr|dur| |}%|dur|d}-t|-  |-|-!dg}|rtj|%|} | | j9 } |dur|| }|dur|| }|dur|| }|dur2| j"dkr2|}(|d	d	 }.|(dddd|. ddf }(|dur|(| }(|dur-| |}| |}| j||d< || j})||) }*|(|)ddf }(| #|(}$|r,tj|$d
| j|*d
}|| j"9 }n| #|(}$|dur| j$dkr|}+|+dd|d	 dddf }+|durY|+| }+|dur| |}|| j})||) },|+|)ddf }+| %|+}#|rtj|#d
| j|,d
}|| j$9 }n| %|+}#|dur|dur| j&dkr| j'|dddddf }/tjj(|/d
d}/| j)|dddddf }0tjj(|0d
d}0| jj*j+,t-t. | /|0|/| jj*\}&}'}1|dur|&| }&|'| }'|1| }1|rtj|&|1}2tj|'|1}3|2|3 d }|| j&9 }t0||| |||d}4|r4|41 s4t2dd |43 D }|s||j4durC|j45 nd||j6durP|j65 nd|j	|j7dur^|j75 nd||j4durk|j45 nd||j6durx|j65 nd||j7dur|j75 nd|!|"|%|&|&|$|#f}5|r|41 s||4f|5 }5t8dd |5D S t9d&i d|d|4d|d|j4d|d|j6d|j	d|j7d|d|j4d|d|j6d|d|j7d|!d |"d!|%d"|&d#|'d$|$d%|#S )'ai  
        Examples:
        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import FlavaForPreTraining, AutoProcessor

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
        >>> processor = AutoProcessor.from_pretrained("facebook/flava-full")

        >>> text = ["a photo of a cat"]

        >>> inputs = processor(
        ...     images=[image],
        ...     text=text,
        ...     return_masks=True,
        ...     return_codebook_pixels=True,
        ...     padding=True,
        ...     max_length=77,
        ...     return_tensors="pt",
        ... )


        >>> output = model(**inputs)
        ```

        Return:

        Nz`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if you are doing inference on unmasked text...T)
r   r   r   r   r   r  r  r   r"  r#  )	r   r   r   r   r  r   r   r"  r#  z`return_loss` is set to True but the image codebook is not initialized and no `mim_labels`  have been passed. Reinstantiate the model with `init_codebook` set to True or pass in your custom `mim_labels`z`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. Call `AutoProcessor` with `return_codebook_pixels` set to Truer   r   rv   rw   r~   )r?   r@   rA   rB   rC   rD   c                 s   s     | ]}|d ur
|ndV  qd S r4  r1   )r-   rJ   r1   r1   r2   r3     s    z.FlavaForPreTraining.forward.<locals>.<genexpr>c                 s   s    | ]	}|d u r|V  qd S rY   r1   )r-   r   r1   r1   r2   r3     r$  rJ   rK   r"   r#   r$   r%   r&   r'   rL   rM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   r1   ):r]   rh  r!  r  loggerwarningr8  r"   r$   r&   r  RuntimeErrorr   r  r  r  r  ner   r  r   r   cross_entropyr   r  r  r  r  r  r  r;   whereanynewr  r  r  r  r  r  	normalizer  r  r=  clamp_LOGIT_SCALE_CLAMP_MINLOGIT_SCALE_CLAMP_MAXr  r>   rF   sumrE   r#   r+   r%   r'   r5   rI   )6r0   r   r  r   r  r   r   r   r   r  r  r  r  r   r   r"  r#  r!  flava_outputflava_masked_outputpos_maskr"   r$   rL   rN   rP   
total_lossmim_lossmlm_lossmmm_text_lossmmm_image_lossgc_lossitm_lossrR   rS   rX   rW   rT   r  r  sequence_for_imagemasked_tokensmim_labels_filteredsequence_for_textmlm_labels_filtered	pos_pairs	end_indextext_embeddingimage_embedding	gc_labelsgc_loss_imagegc_loss_textflava_lossesr   r1   r1   r2   r     s  8
 


"


 

"
















"





 



	
	
zFlavaForPreTraining.forwardrY   )NNNNNNNNNNNNNNTNN)r7   r8   r9   _tied_weights_keysr   r   r   rp  rd   r;   r   r  r   "FLAVA_PRETRAINING_INPUTS_DOCSTRINGrr  r   rI   r  r<   rH   r
   r	   r   r   r1   r1   rq   r2   r    s|    

	
r  )^r:   r   r   r   dataclassesr   typingr   r   r   r   r   r	   r
   r;   torch.utils.checkpointr   activationsr   modeling_outputsr   r   modeling_utilsr   r   r   utilsr   r   r   r   r   r   configuration_flavar   r   r   r   r   
get_loggerr7   r"  rs  r  rt  r  r  ru  #FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LISTr,  r-  r   r!   r>   rI   rp  r\   rj   r   r   r   r   r  r  r  r  r1  FLAVA_START_DOCSTRINGFLAVA_INPUTS_DOCSTRING_COMMON!FLAVA_IMAGE_INPUTS_DOCSTRING_BASErq   FLAVA_TEXT_INPUTS_DOCSTRING_BASEr~  r  !FLAVA_MODEL_INPUTS_DOCSTRING_BASEr  rG  'FLAVA_PRETRAINING_START_DOCSTRING_EXTRAr7  rr  rF  rv  r  r  r  r  r  r  r  r  r  r  r  r1   r1   r1   r2   <module>   s   $ 
	%$e]$9E*.3			
+/
_
e
^
  
u(