o
    h"                     @   sT   d Z ddlmZ ddlmZ eeZdddddd	d
dddd
ZG dd deZ	dS )z' Funnel Transformer model configuration   )PretrainedConfig)loggingzHhttps://huggingface.co/funnel-transformer/small/resolve/main/config.jsonzMhttps://huggingface.co/funnel-transformer/small-base/resolve/main/config.jsonzIhttps://huggingface.co/funnel-transformer/medium/resolve/main/config.jsonzNhttps://huggingface.co/funnel-transformer/medium-base/resolve/main/config.jsonzOhttps://huggingface.co/funnel-transformer/intermediate/resolve/main/config.jsonzThttps://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.jsonzHhttps://huggingface.co/funnel-transformer/large/resolve/main/config.jsonzMhttps://huggingface.co/funnel-transformer/large-base/resolve/main/config.jsonzIhttps://huggingface.co/funnel-transformer/xlarge/resolve/main/config.jsonzNhttps://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json)
zfunnel-transformer/smallzfunnel-transformer/small-basezfunnel-transformer/mediumzfunnel-transformer/medium-basezfunnel-transformer/intermediatez$funnel-transformer/intermediate-basezfunnel-transformer/largezfunnel-transformer/large-basezfunnel-transformer/xlargezfunnel-transformer/xlarge-basec                       s   e Zd ZdZdZdddZdg ddd	d
dddddddddddddddf fdd	Zedd Zej	dd Zedd Z
e
j	dd Z
  ZS )FunnelConfiga  
    This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to
    instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel
    Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`].
        block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
            The sizes of the blocks used in the model.
        block_repeats (`List[int]`, *optional*):
            If passed along, each layer of each block is repeated the number of times indicated.
        num_decoder_layers (`int`, *optional*, defaults to 2):
            The number of layers in the decoder (when not using the base model).
        d_model (`int`, *optional*, defaults to 768):
            Dimensionality of the model's hidden states.
        n_head (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        d_head (`int`, *optional*, defaults to 64):
            Dimensionality of the model's heads.
        d_inner (`int`, *optional*, defaults to 3072):
            Inner dimension in the feed-forward blocks.
        hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability used between the two layers of the feed-forward blocks.
        initializer_range (`float`, *optional*, defaults to 0.1):
            The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers.
        initializer_std (`float`, *optional*):
            The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of
            linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for
            linear layers.
        layer_norm_eps (`float`, *optional*, defaults to 1e-09):
            The epsilon used by the layer normalization layers.
        pooling_type (`str`, *optional*, defaults to `"mean"`):
            Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block.
        attention_type (`str`, *optional*, defaults to `"relative_shift"`):
            Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter
            is faster on TPU.
        separate_cls (`bool`, *optional*, defaults to `True`):
            Whether or not to separate the cls token when applying pooling.
        truncate_seq (`bool`, *optional*, defaults to `True`):
            When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a
            sequence length that is not a multiple of 2.
        pool_q_only (`bool`, *optional*, defaults to `True`):
            Whether or not to apply the pooling only to the query or to query, key and values for the attention layers.
    funneld_modeln_head)hidden_sizenum_attention_headsi:w  )   r
   r
   N   i      @   i   gelu_newg?g        g&.>meanrelative_shiftTc                    s   || _ || _|d u rdgt| n|| _t|t| jks!J d|| _|| _|| _|| _|| _|	| _	|
| _
|| _|| _|| _|| _|| _|dv sQJ d| d|| _|dv s`J d| d|| _|| _|| _|| _t jdi | d S )	N   z>`block_sizes` and `block_repeats` should have the same length.)r   maxzGot z< for `pooling_type` but only 'mean' and 'max' are supported.)r   
factorizedzO for `attention_type` but only 'relative_shift' and 'factorized' are supported. )
vocab_sizeblock_sizeslenblock_repeatsnum_decoder_layersr   r   d_headd_inner
hidden_acthidden_dropoutattention_dropoutactivation_dropoutinitializer_rangeinitializer_stdlayer_norm_epspooling_typeattention_typeseparate_clstruncate_seqpool_q_onlysuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   kwargs	__class__r   e/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/funnel/configuration_funnel.pyr)   j   s@   



zFunnelConfig.__init__c                 C   
   t | jS N)sumr   r*   r   r   r.   num_hidden_layers      
zFunnelConfig.num_hidden_layersc                 C      t d)NzYThis model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.NotImplementedErrorr*   valuer   r   r.   r3      s   c                 C   r/   r0   )r   r   r2   r   r   r.   
num_blocks   r4   zFunnelConfig.num_blocksc                 C   r5   )NzRThis model does not support the setting of `num_blocks`. Please set `block_sizes`.r6   r8   r   r   r.   r:      s   )__name__
__module____qualname____doc__
model_typeattribute_mapr)   propertyr3   setterr:   __classcell__r   r   r,   r.   r   )   sF    ::


r   N)
r>   configuration_utilsr   utilsr   
get_loggerr;   logger$FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAPr   r   r   r   r.   <module>   s    
