o
    ho                     @   s0   d Z ddlmZ ddlmZ G dd deZdS )z$
Image/Text processor class for GIT
   )ProcessorMixin)BatchEncodingc                       sV   e Zd ZdZddgZdZdZ fddZdd	d
Zdd Z	dd Z
edd Z  ZS )GitProcessora  
    Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.

    [`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
    [`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information.

    Args:
        image_processor ([`AutoImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`AutoTokenizer`]):
            The tokenizer is a required input.
    image_processor	tokenizerAutoImageProcessorAutoTokenizerc                    s   t  || | j| _d S )N)super__init__r   current_processor)selfr   r   	__class__ \/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/git/processing_git.pyr
   )   s   zGitProcessor.__init__Nc                 K   s   |du r|du rt d|dur| j|fd|i|}|dur*| j|fd|i|}|dur9|dur9|j|d< |S |dur?|S ttdi ||dS )a;	  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.

            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz?You have to specify either text or images. Both cannot be none.return_tensorspixel_values)datatensor_typer   )
ValueErrorr   r   r   r   dict)r   textimagesr   kwargsencodingimage_featuresr   r   r   __call__-   s   $
zGitProcessor.__call__c                 O      | j j|i |S )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r   batch_decoder   argsr   r   r   r   r   b      zGitProcessor.batch_decodec                 O   r   )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r   decoder   r   r   r   r"   i   r!   zGitProcessor.decodec                 C   s   g dS )N)	input_idsattention_maskr   r   )r   r   r   r   model_input_namesp   s   zGitProcessor.model_input_names)NNN)__name__
__module____qualname____doc__
attributesimage_processor_classtokenizer_classr
   r   r   r"   propertyr%   __classcell__r   r   r   r   r      s    
5r   N)r)   processing_utilsr   tokenization_utils_baser   r   r   r   r   r   <module>   s   