o
    h%#                     @   s   d Z ddlmZ ddlmZmZmZmZ ddlm	Z	m
Z
mZ ddlmZ ddlmZmZ ddlmZ eeZd	d
iZG dd deZG dd deZdS )z GPT-J model configuration    )OrderedDict)AnyListMappingOptional   )PreTrainedTokenizer
TensorTypeis_torch_available)PretrainedConfig)OnnxConfigWithPastPatchingSpec)loggingzEleutherAI/gpt-j-6BzChttps://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.jsonc                       sV   e Zd ZdZdZdddddZ				
														d fdd	Z  ZS )
GPTJConfiga=  
    This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the GPT-J
    [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
    [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
    for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50400):
            Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`GPTJModel`].
        n_positions (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_embd (`int`, *optional*, defaults to 4096):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 28):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        rotary_dim (`int`, *optional*, defaults to 64):
            Number of dimensions in the embedding that Rotary Position Embedding is applied to.
        n_inner (`int`, *optional*, defaults to None):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"gelu_new"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`int`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).

    Example:

    ```python
    >>> from transformers import GPTJModel, GPTJConfig

    >>> # Initializing a GPT-J 6B configuration
    >>> configuration = GPTJConfig()

    >>> # Initializing a model from the configuration
    >>> model = GPTJModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```gptjn_positionsn_embdn_headn_layer)max_position_embeddingshidden_sizenum_attention_headsnum_hidden_layers              @   Ngelu_new        h㈵>{Gz?TP  Fc                    s~   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _t jd|||d| d S )N)bos_token_ideos_token_idtie_word_embeddings )
vocab_sizer   r   r   r   n_inner
rotary_dimactivation_functionresid_pdrop
embd_pdrop
attn_pdroplayer_norm_epsiloninitializer_range	use_cacher$   r%   super__init__)selfr(   r   r   r   r   r*   r)   r+   r,   r-   r.   r/   r0   r1   r$   r%   r&   kwargs	__class__r'   a/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/gptj/configuration_gptj.pyr3   a   s*   
zGPTJConfig.__init__)r   r   r   r   r   r   Nr   r    r    r    r!   r"   Tr#   r#   F)__name__
__module____qualname____doc__
model_typeattribute_mapr3   __classcell__r'   r'   r6   r8   r   !   s4    7	r   c                       s   e Zd Z			ddededee def fdd	Ze	d
e
ee
eef f fddZe	d
efddZe	d
efddZ				ddededededee d
e
eef f fddZe	d
efddZ  ZS )GPTJOnnxConfigdefaultNFconfigtaskpatching_specsuse_pastc                    s2   t  j||||d t| jdd sd| j_d S d S )N)rC   rD   rE   pad_token_idr   )r2   r3   getattr_configrF   )r4   rB   rC   rD   rE   r6   r'   r8   r3      s   zGPTJOnnxConfig.__init__returnc                 C   sJ   t ddddi}| jr| j|dd ddd|d< |S ddd|d< |S )	N	input_idsbatchsequence)r      inputs)	directionzpast_sequence + sequenceattention_mask)r   rE   fill_with_past_key_values_)r4   common_inputsr'   r'   r8   rN      s   zGPTJOnnxConfig.inputsc                 C      | j jS N)rH   r   r4   r'   r'   r8   
num_layers      zGPTJOnnxConfig.num_layersc                 C   rS   rT   )rH   r   rU   r'   r'   r8   r      rW   z"GPTJOnnxConfig.num_attention_heads	tokenizer
batch_size
seq_lengthis_pair	frameworkc                    s   t t| j|||||d}td|d i}| jrIt stddd l|d j\}}	|	d }
|| j	|
| j
j| j	 f  fddt| jD |d< |d	 |d	< | jrj|d	 j}j|d	 j||
|d
gdd|d	< |S )N)rZ   r[   r\   r]   rJ   zACannot generate dummy past_keys inputs without PyTorch installed.r      c                    s    g | ]}    fqS r'   )zeros).0_
past_shapetorchr'   r8   
<listcomp>   s    z8GPTJOnnxConfig.generate_dummy_inputs.<locals>.<listcomp>past_key_valuesrP   )dtyperM   )dim)r2   r   generate_dummy_inputsr   rE   r
   
ValueErrorrd   shaper   rH   r   rangerV   rg   catones)r4   rY   rZ   r[   r\   r]   rR   ordered_inputsrK   seqlenpast_key_values_length
mask_dtyper6   rb   r8   ri      s2   




z$GPTJOnnxConfig.generate_dummy_inputsc                 C   s   dS )N   r'   rU   r'   r'   r8   default_onnx_opset   s   z!GPTJOnnxConfig.default_onnx_opset)rA   NF)rX   rX   FN)r9   r:   r;   r   strr   r   boolr3   propertyr   intrN   rV   r   r   r   r	   r   ri   rt   r?   r'   r'   r6   r8   r@      sL     

,r@   N)r<   collectionsr   typingr   r   r   r    r   r	   r
   configuration_utilsr   onnxr   r   utilsr   
get_loggerr9   logger"GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAPr   r@   r'   r'   r'   r8   <module>   s   
m