o
    h                     @   s  d Z ddlZddlmZmZmZ ddlZddlZddl	Zddlm
Z
 ddlmZ ddlmZ ddlmZ dd	lmZmZmZ dd
lmZ ddlmZmZmZmZmZ ddlmZ ee Z!dZ"dZ#dZ$g dZ%dZ&dZ'dZ(dZ)dZ*dgZ+		dJdee,e,f de-de,deej. de,dej/fddZ0G dd  d e
j1Z2G d!d" d"e
j1Z3G d#d$ d$e
j1Z4G d%d& d&e
j1Z5G d'd( d(e
j1Z6G d)d* d*e
j1Z7G d+d, d,e7Z8G d-d. d.e
j1Z9G d/d0 d0e
j1Z:G d1d2 d2e
j1Z;G d3d4 d4e
j1Z<G d5d6 d6e
j1Z=G d7d8 d8e
j1Z>G d9d: d:e
j1Z?G d;d< d<e
j1Z@G d=d> d>eZAd?ZBd@ZCedAeBG dBdC dCeAZDedDeBG dEdF dFeAZEedGeBG dHdI dIeAZFdS )Kz PyTorch Hubert model.    N)OptionalTupleUnion)nn)CrossEntropyLoss   )ACT2FN)is_deepspeed_zero3_enabled)BaseModelOutputCausalLMOutputSequenceClassifierOutput)PreTrainedModel)add_code_sample_docstringsadd_start_docstrings%add_start_docstrings_to_model_forwardloggingreplace_return_docstrings   )HubertConfigr   zfacebook/hubert-large-ls960-ft)r   i$  i   z['MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'gGz6@zsuperb/hubert-base-superb-ksz'_unknown_'g(\!@zfacebook/hubert-base-ls960shape	mask_probmask_lengthattention_mask	min_masksreturnc                    s  | \}dk rt dkrt d d dtjd   fdd}|dur:|d	  n
fd
dt|D }tj	|ft
d}g }	|}
|
dkrZ|S |D ];}||}tjjt|d  |dd}t|dkr}d }n|d }t|tj|
| tjd| g}|	| q\t|	}	t|	dddddf ||
f}	|	||
 }	tddddf }t|||
f||
 }|	| }	|	 d krd |	|	d k< t||	dd	 |S )af  
    Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
    ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
    CPU as part of the preprocessing during training.

    Args:
        shape: The shape for which to compute masks. This should be of a tuple of size 2 where
               the first element is the batch size and the second element is the length of the axis to span.
        mask_prob:  The percentage of the whole axis (between 0 and 1) which will be masked. The number of
                    independently generated mask spans of length `mask_length` is computed by
                    `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
                    actual percentage will be smaller.
        mask_length: size of the mask
        min_masks: minimum number of masked spans
        attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
                        each batch dimension.
    r   z&`mask_length` has to be bigger than 0.zO`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: z and `sequence_length`: `c                    sX   t |     }t|}| kr }| d  |k r*t| d  d}|S )z;Given input length, compute how many spans should be maskedr   r   )intmax)input_lengthnum_masked_spanepsilonr   r   r   sequence_length `/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/hubert/modeling_hubert.pycompute_num_masked_spanj   s   
z6_compute_mask_indices.<locals>.compute_num_masked_spanNc                    s   g | ]} qS r#   r#   .0_)r"   r#   r$   
<listcomp>}   s    z)_compute_mask_indices.<locals>.<listcomp>dtyper   F)replace)
ValueErrornprandomranditemsumdetachtolistrangezerosboolchoicearangelenconcatenateonesint32appendarraybroadcast_toreshaper   put_along_axis)r   r   r   r   r   
batch_sizer%   input_lengthsspec_aug_maskspec_aug_mask_idxsmax_num_masked_spanr   r   spec_aug_mask_idxdummy_mask_idxoffsetsr#   r    r$   _compute_mask_indicesD   s\   

rL   c                       &   e Zd Zd fdd	Zdd Z  ZS )HubertNoLayerNormConvLayerr   c                    sj   t    |dkr|j|d  nd| _|j| | _tj| j| j|j| |j| |j	d| _
t|j | _d S )Nr   r   kernel_sizestridebias)super__init__conv_dimin_conv_dimout_conv_dimr   Conv1dconv_kernelconv_stride	conv_biasconvr   feat_extract_activation
activationselfconfiglayer_id	__class__r#   r$   rT      s   
z#HubertNoLayerNormConvLayer.__init__c                 C   s   |  |}| |}|S N)r\   r^   r`   hidden_statesr#   r#   r$   forward   s   

z"HubertNoLayerNormConvLayer.forwardr   __name__
__module____qualname__rT   rh   __classcell__r#   r#   rc   r$   rN      s    rN   c                       rM   )HubertLayerNormConvLayerr   c                    s|   t    |dkr|j|d  nd| _|j| | _tj| j| j|j| |j| |j	d| _
tj| jdd| _t|j | _d S )Nr   r   rO   T)elementwise_affine)rS   rT   rU   rV   rW   r   rX   rY   rZ   r[   r\   	LayerNorm
layer_normr   r]   r^   r_   rc   r#   r$   rT      s   
z!HubertLayerNormConvLayer.__init__c                 C   s:   |  |}|dd}| |}|dd}| |}|S )Nr&   )r\   	transposerr   r^   rf   r#   r#   r$   rh      s   


z HubertLayerNormConvLayer.forwardri   rj   r#   r#   rc   r$   ro      s    ro   c                       rM   )HubertGroupNormConvLayerr   c                    s   t    |dkr|j|d  nd| _|j| | _tj| j| j|j| |j| |j	d| _
t|j | _tj| j| jdd| _d S )Nr   r   rO   T)
num_groupsnum_channelsaffine)rS   rT   rU   rV   rW   r   rX   rY   rZ   r[   r\   r   r]   r^   	GroupNormrr   r_   rc   r#   r$   rT      s   
z!HubertGroupNormConvLayer.__init__c                 C   s"   |  |}| |}| |}|S re   )r\   rr   r^   rf   r#   r#   r$   rh      s   


z HubertGroupNormConvLayer.forwardri   rj   r#   r#   rc   r$   ru      s    ru   c                       $   e Zd Z fddZdd Z  ZS )HubertPositionalConvEmbeddingc                    s   t    tj|j|j|j|jd |jd| _tjj	}t
tjjdr'tjjj	}t rddd l}|jj| jjdd || jddd| _W d    n1 sLw   Y  |j| | jj |j| | jj n	|| jddd| _t|j| _t|j | _d S )N   )rP   paddinggroupsweight_normr   modifier_rankweight)namedim)rS   rT   r   rX   hidden_sizenum_conv_pos_embeddingsnum_conv_pos_embedding_groupsr\   utilsr   hasattrparametrizationsr	   	deepspeedzeroGatheredParametersr   register_external_parameterweight_vweight_gHubertSamePadLayerr}   r   r]   r^   )r`   ra   r   r   rc   r#   r$   rT     s*   

z&HubertPositionalConvEmbedding.__init__c                 C   s:   | dd}| |}| |}| |}| dd}|S Nr   r|   )rt   r\   r}   r^   rf   r#   r#   r$   rh   #  s   


z%HubertPositionalConvEmbedding.forwardrj   r#   r#   rc   r$   r{     s    r{   c                       rz   )r   c                    s*   t    |d dkrd| _d S d| _d S )Nr|   r   r   )rS   rT   num_pad_remove)r`   r   rc   r#   r$   rT   0  s   
 zHubertSamePadLayer.__init__c                 C   s,   | j dkr|d d d d d | j  f }|S Nr   )r   rf   r#   r#   r$   rh   4  s   
zHubertSamePadLayer.forwardrj   r#   r#   rc   r$   r   /  s    r   c                       s0   e Zd ZdZ fddZdd Zdd Z  ZS )HubertFeatureEncoderz.Construct the features from raw audio waveformc                    s   t     jdkr t ddg fddt jd D  }n jdkr2 fddt jD }n	td	 j d
t|| _	d| _
d| _d S )Ngroupr   rb   c                    s   g | ]
}t  |d  dqS )r   r   )rN   r(   ira   r#   r$   r*   B  s    z1HubertFeatureEncoder.__init__.<locals>.<listcomp>r   layerc                    s   g | ]}t  |d qS )r   )ro   r   r   r#   r$   r*   F  s    z`config.feat_extract_norm` is z), but has to be one of ['group', 'layer']FT)rS   rT   feat_extract_normru   r6   num_feat_extract_layersr.   r   
ModuleListconv_layersgradient_checkpointing_requires_grad)r`   ra   r   rc   r   r$   rT   >  s   




zHubertFeatureEncoder.__init__c                 C   s   |   D ]}d|_qd| _d S NF)
parametersrequires_gradr   r`   paramr#   r#   r$   _freeze_parametersO  s   
z'HubertFeatureEncoder._freeze_parametersc                 C   s\   |d d d f }| j r| jrd|_| jD ]}| j r'| jr'| jr'| |j|}q||}q|S )NT)r   trainingr   r   r   _gradient_checkpointing_func__call__)r`   input_valuesrg   
conv_layerr#   r#   r$   rh   T  s   

zHubertFeatureEncoder.forward)rk   rl   rm   __doc__rT   r   rh   rn   r#   r#   rc   r$   r   ;  s
    r   c                       s   e Zd Z fddZ  ZS )HubertFeatureExtractorc                    s8   t  | td| jj d| jjd j dt d S )NzThe class `zD` has been depreciated and will be removed in Transformers v5. Use `r   z
` instead.)rS   rT   warningswarnrd   rk   	__bases__FutureWarningr`   ra   rc   r#   r$   rT   h  s   zHubertFeatureExtractor.__init__)rk   rl   rm   rT   rn   r#   r#   rc   r$   r   g  s    r   c                       rz   )HubertFeatureProjectionc                    sX   t    |j| _| jrtj|jd |jd| _t|jd |j	| _
t|j| _d S )Nr&   eps)rS   rT   feat_proj_layer_normr   rq   rU   layer_norm_epsrr   Linearr   
projectionDropoutfeat_proj_dropoutdropoutr   rc   r#   r$   rT   s  s   
z HubertFeatureProjection.__init__c                 C   s(   | j r| |}| |}| |}|S re   )r   rr   r   r   rf   r#   r#   r$   rh   {  s
   


zHubertFeatureProjection.forwardrj   r#   r#   rc   r$   r   r  s    r   c                       s   e Zd ZdZ					ddededed	ed
ededee f fddZ	de
jdedefddZ					dde
jdee
j deee
j  dee
j dee
j dedee
jee
j eee
j  f fddZ  ZS )HubertAttentionz=Multi-headed attention from 'Attention Is All You Need' paper        FTN	embed_dim	num_headsr   
is_decoderrR   	is_causalra   c                    s   t    || _|| _|| _|| | _|| _| j| | jkr*td| j d| d| jd | _|| _	|| _
tj|||d| _tj|||d| _tj|||d| _tj|||d| _d S )Nz;embed_dim must be divisible by num_heads (got `embed_dim`: z and `num_heads`: z).g      )rR   )rS   rT   r   r   r   head_dimra   r.   scalingr   r   r   r   k_projv_projq_projout_proj)r`   r   r   r   r   rR   r   ra   rc   r#   r$   rT     s&   



zHubertAttention.__init__tensorseq_lenbszc                 C   s    | ||| j| jdd S r   )viewr   r   rt   
contiguous)r`   r   r   r   r#   r#   r$   _shape  s    zHubertAttention._shaperg   key_value_statespast_key_valuer   layer_head_maskoutput_attentionsr   c                 C   sr  |du}|  \}}	}
| || j }|r.|dur.|d jd |jd kr.|d }|d }nZ|rE| | |d|}| | |d|}nC|durt| | |d|}| | |d|}tj|d |gdd}tj|d |gdd}n| | |d|}| | |d|}| j	r||f}|| j
 d| jf}| ||	|j| }|j| }|j| }| d}t||dd}|  || j
 |	|fkrtd|| j
 |	|f d|   |dur|  |d|	|fkrtd	|d|	|f d|   ||| j
|	|| }||| j
 |	|}tjj|dd}|durL|  | j
fkr1td
| j
f d|   |dddd||| j
|	| }||| j
 |	|}|rc||| j
|	|}||| j
 |	|}nd}tjj|| j| jd}t||}|  || j
 |	| jfkrtd|| j
 |	| jf d|   ||| j
|	| j}|dd}|||	| j}| |}|||fS )z#Input shape: Batch x Time x ChannelNr   r|   r   r&   r   z$Attention weights should be of size z	, but is z!Attention mask should be of size z/Head mask for a single layer should be of size )pr   z `attn_output` should be of size )sizer   r   r   r   r   r   torchcatr   r   r   r   rB   bmmrt   r.   r   
functionalsoftmaxr   r   r   r   )r`   rg   r   r   r   r   r   is_cross_attentionr   tgt_lenr)   query_states
key_statesvalue_states
proj_shapesrc_lenattn_weightsattn_weights_reshaped
attn_probsattn_outputr#   r#   r$   rh     s   





"

zHubertAttention.forward)r   FTFN)NNNNF)rk   rl   rm   r   r   floatr8   r   r   rT   r   Tensorr   r   rh   rn   r#   r#   rc   r$   r     sV    r   c                       rz   )HubertFeedForwardc                    sp   t    t|j| _t|j|j| _	t
|jtr"t|j | _n|j| _t|j|j| _t|j| _d S re   )rS   rT   r   r   activation_dropoutintermediate_dropoutr   r   intermediate_sizeintermediate_dense
isinstance
hidden_actstrr   intermediate_act_fnoutput_densehidden_dropoutoutput_dropoutr   rc   r#   r$   rT   %  s   
zHubertFeedForward.__init__c                 C   s6   |  |}| |}| |}| |}| |}|S re   )r   r   r   r   r   rf   r#   r#   r$   rh   2  s   




zHubertFeedForward.forwardrj   r#   r#   rc   r$   r   $  s    r   c                       s&   e Zd Z fddZdddZ  ZS )HubertEncoderLayerc                    sf   t    t|j|j|jdd| _t|j	| _
tj|j|jd| _t|| _tj|j|jd| _d S )NFr   r   r   r   r   )rS   rT   r   r   num_attention_headsattention_dropout	attentionr   r   r   r   rq   r   rr   r   feed_forwardfinal_layer_normr   rc   r#   r$   rT   >  s   

zHubertEncoderLayer.__init__NFc                 C   sf   |}| j |||d\}}}| |}|| }| |}|| | }| |}|f}|r1||f7 }|S Nr   r   )r   r   rr   r   r   r`   rg   r   r   attn_residualr   r)   outputsr#   r#   r$   rh   K  s   



zHubertEncoderLayer.forwardr   rj   r#   r#   rc   r$   r   =  s    r   c                       s,   e Zd Z fddZdejfddZ  ZS )HubertAttnAdapterLayerc                    sZ   t    |j| _|j| _t| j| _t	| j| j| _
t | _t	| j| j| _dS )z
        Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed
        up training throughput.
        N)rS   rT   adapter_attn_dim	input_dimr   
hidden_dimr   rq   normr   linear_1ReLUact_fnlinear_2r   rc   r#   r$   rT   a  s   

zHubertAttnAdapterLayer.__init__rg   c                 C   s,   |  |}| |}| |}| |}|S re   )r  r  r  r	  rf   r#   r#   r$   rh   o  s
   



zHubertAttnAdapterLayer.forward)rk   rl   rm   rT   r   FloatTensorrh   rn   r#   r#   rc   r$   r  `  s    r  c                       s@   e Zd Z fddZ		d
dejdeej defdd	Z  Z	S )!HubertEncoderLayerStableLayerNormc                    s   t    t|j|j|jdd| _t|j	| _
tj|j|jd| _t|| _tj|j|jd| _t|dd d ur@t|| _d S d | _d S )NFr   r   r  )rS   rT   r   r   r   r   r   r   r   r   r   rq   r   rr   r   r   r   getattrr  adapter_layerr   rc   r#   r$   rT   {  s   


z*HubertEncoderLayerStableLayerNorm.__init__NFrg   r   r   c                 C   sz   |}|  |}| j|||d\}}}| |}|| }|| | | }| jd ur1|| | }|f}|r;||f7 }|S r   )rr   r   r   r   r   r  r   r#   r#   r$   rh     s   



z)HubertEncoderLayerStableLayerNorm.forwardr   )
rk   rl   rm   rT   r   r   r   r8   rh   rn   r#   r#   rc   r$   r  z  s    r  c                       sL   e Zd Z fddZ				ddejdeej ded	ed
ef
ddZ	  Z
S )HubertEncoderc                    f   t     | _t | _tj j jd| _	t
 j| _t fddt jD | _d| _d S )Nr   c                       g | ]}t  qS r#   )r   r'   r   r#   r$   r*         z*HubertEncoder.__init__.<locals>.<listcomp>FrS   rT   ra   r{   pos_conv_embedr   rq   r   r   rr   r   r   r   r   r6   num_hidden_layerslayersr   r   rc   r   r$   rT     s   

 
zHubertEncoder.__init__NFTrg   r   r   output_hidden_statesreturn_dictc                 C   s  |rdnd }|r
dnd }|d urO| ddd|jd }d|| < d|d d d d d d f j|jd }|t|jj }||jd d|jd |jd }| 	|}	||	 }| 
|}| |}t }
| jD ]G}|rq||f }tg }| jr|| jjk rdnd	}|r|
r| jr| jr| |j|||}n||||d
}|d }|rd}|r||d f }qh|r||f }|stdd |||fD S t|||dS )Nr#   r&   r   r|   r         ?r+   TFr   NNc                 s       | ]	}|d ur|V  qd S re   r#   r(   vr#   r#   r$   	<genexpr>      z(HubertEncoder.forward.<locals>.<genexpr>last_hidden_staterg   
attentions)	unsqueezerepeatr   tor,   r   finfominexpandr  rr   r   r	   r  r1   r   ra   	layerdropr   r   r   tupler
   r`   rg   r   r   r  r  all_hidden_statesall_self_attentionsexpand_attention_maskposition_embeddingsdeepspeed_zero3_is_enabledr   dropout_probabilityskip_the_layerlayer_outputsr#   r#   r$   rh     s\   
&






zHubertEncoder.forwardNFFT)rk   rl   rm   rT   r   r   r   r   r8   rh   rn   r#   r#   rc   r$   r    s"    r  c                       s.   e Zd Z fddZ				dddZ  ZS )	HubertEncoderStableLayerNormc                    r  )Nr   c                    r  r#   )r  r'   r   r#   r$   r*     r  z9HubertEncoderStableLayerNorm.__init__.<locals>.<listcomp>Fr  r   rc   r   r$   rT     s   


z%HubertEncoderStableLayerNorm.__init__NFTc                 C   s  |rdnd }|r
dnd }|d urO| ddd|jd }d|| < d|d d d d d d f j|jd }|t|jj }||jd d|jd |jd }| 	|}	||	 }| 
|}t }
| jD ]G}|rl||f }tg }| jr||| jjk r|dnd	}|r|
r| jr| jr| |j|||}n||||d
}|d }|rd}|r||d f }qc| |}|r||f }|stdd |||fD S t|||dS )Nr#   r&   r   r|   r   r  r+   TFr   r  c                 s   r  re   r#   r  r#   r#   r$   r  G  r  z7HubertEncoderStableLayerNorm.forward.<locals>.<genexpr>r  )r"  r#  r   r$  r,   r   r%  r&  r'  r  r   r	   r  r1   r   ra   r(  r   r   r   rr   r)  r
   r*  r#   r#   r$   rh     s\   
&






z$HubertEncoderStableLayerNorm.forwardr3  rj   r#   r#   rc   r$   r4    s    r4  c                   @   sT   e Zd ZdZeZdZdZdZdd Z	de
ejef fdd	Zd
edejfddZdS )HubertPreTrainedModelz
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    hubertr   Tc                 C   sR  t |tjr|jjjd| jjd n}t |tjtj	fr)|j
j  |jjd nft |tjrt rddl}t|dret|dre|jj|j|jgdd tj|jj W d   n1 s_w   Y  n*|jj|jdd tj|jj W d   n1 sw   Y  ntj|jj t |tjtjfr|j
dur|j
j  dS dS dS )	zInitialize the weightsr   )meanstdr  r   Nr   r   r   )r   r   r   r   datanormal_ra   initializer_rangerq   ry   rR   zero_fill_rX   r	   r   r   r   r   r   r   initkaiming_normal_)r`   moduler   r#   r#   r$   _init_weightsZ  s*   z#HubertPreTrainedModel._init_weightsrE   c                 C   s4   dd }t | jj| jjD ]
\}}||||}q|S )zH
        Computes the output length of the convolutional layers
        c                 S   s   t j| | |ddd S )Nfloor)rounding_moder   )r   div)r   rP   rQ   r#   r#   r$   _conv_out_lengthx  s   zPHubertPreTrainedModel._get_feat_extract_output_lengths.<locals>._conv_out_length)zipra   rY   rZ   )r`   rE   rE  rP   rQ   r#   r#   r$    _get_feat_extract_output_lengthss  s   z6HubertPreTrainedModel._get_feat_extract_output_lengthsfeature_vector_lengthr   c                 C   s~   |  |dtj}|jd }tj||f|j|jd}d|tj	|jd |jd|d f< |
dgd
dg }|S )Nr&   r   )r,   devicer   )rI  )rG  r3   r$  r   longr   r7   r,   rI  r:   flipcumsumr8   )r`   rH  r   output_lengthsrD   r#   r#   r$   "_get_feature_vector_attention_mask  s   
"z8HubertPreTrainedModel._get_feature_vector_attention_maskN)rk   rl   rm   r   r   config_classbase_model_prefixmain_input_namesupports_gradient_checkpointingrA  r   r   
LongTensorr   rG  rN  r#   r#   r#   r$   r5  O  s    r5  a!  
    Hubert was proposed in [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden
    Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia,
    Ruslan Salakhutdinov, Abdelrahman Mohamed.

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving etc.).

    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`HubertConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
a  
    Args:
        input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
            Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
            into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
            soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
            conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
        attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
            1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            <Tip warning={true}>

            `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
            True`. For all models whose processor has `config.return_attention_mask == False`, such as
            [hubert-base](https://huggingface.co/facebook/hubert-base-ls960), `attention_mask` should **not** be passed
            to avoid degraded performance when doing batched inference. For such models `input_values` should simply be
            padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different
            results depending on whether `input_values` is padded or not.

            </Tip>

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
z`The bare Hubert Model transformer outputting raw hidden-states without any specific head on top.c                       s   e Zd Zdef fddZ		ddejdeej deej fdd	Z	e
eeeed
					ddeej deej deej dee dee dee deeef fddZ  ZS )HubertModelra   c                    sz   t  | || _t|| _t|| _|jdks|jdkr)t	
t|j | _|jr2t|| _nt|| _|   d S )Nr   )rS   rT   ra   r   feature_extractorr   feature_projectionmask_time_probmask_feature_probr   	Parameterr   r
  r   uniform_masked_spec_embeddo_stable_layer_normr4  encoderr  	post_initr   rc   r#   r$   rT     s   


zHubertModel.__init__Nrg   mask_time_indicesr   c                 C   s  t | jdds	|S | \}}}|dur| j|j||< n-| jjdkrK| jrKt||f| jj| jj	|| jj
d}tj||jtjd}| j|j||< | jjdkr| jrt||f| jj| jj| jjd}tj||jtjd}|dddf d|d}d||< |S )	z
        Masks extracted features along time axis and/or along feature axis according to
        [SpecAugment](https://arxiv.org/abs/1904.08779).
        apply_spec_augmentTNr   )r   r   r   r   )rI  r,   )r   r   r   r&   )r  ra   r   r[  r$  r,   rW  r   rL   mask_time_lengthmask_time_min_masksr   r   rI  r8   rX  mask_feature_lengthmask_feature_min_masksr'  )r`   rg   r_  r   rD   r"   r   mask_feature_indicesr#   r#   r$   _mask_hidden_states  s4   zHubertModel._mask_hidden_states)output_typerO  r   r   r  r  r   c           
      C   s   |dur|n| j j}|dur|n| j j}|dur|n| j j}| |}|dd}|dur6| |jd |}| |}| j	||d}| j
|||||d}	|	d }|s[|f|	dd  S t||	j|	jdS )aZ  

        Returns:

        Example:

        ```python
        >>> from transformers import AutoProcessor, HubertModel
        >>> from datasets import load_dataset
        >>> import soundfile as sf

        >>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
        >>> model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")


        >>> def map_to_array(batch):
        ...     speech, _ = sf.read(batch["file"])
        ...     batch["speech"] = speech
        ...     return batch


        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        >>> ds = ds.map(map_to_array)

        >>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values  # Batch size 1
        >>> hidden_states = model(input_values).last_hidden_state
        ```Nr   r|   )r_  r   r   r  r  r   r  )ra   r   r  use_return_dictrU  rt   rN  r   rV  rf  r]  r
   rg   r!  )
r`   r   r   r_  r   r  r  extract_featuresrg   encoder_outputsr#   r#   r$   rh     s2   &

zHubertModel.forwardr  NNNNN)rk   rl   rm   r   rT   r   r
  r   rS  rf  r   HUBERT_INPUTS_DOCSTRINGr   r
   _CONFIG_FOR_DOCr   r8   r   r   rh   rn   r#   r#   rc   r$   rT    sB    
.

rT  zdHubert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).c                       s   e Zd Zddee f fddZdd Zdd Zd	d
 Zdd Z	e
eeeeeeed					ddeej deej dee dee dee deej deeef fddZ  ZS )HubertForCTCNtarget_langc                    s~   t  | t|| _t|j| _|| _|j	d u r#t
d| j dt|dr.|jr.|jn|j}t||j	| _|   d S )NzYou are trying to instantiate z with a configuration that does not define the vocabulary size of the language model head. Please instantiate the model as follows: `HubertForCTC.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of your model's configuration.add_adapter)rS   rT   rT  r6  r   r   final_dropoutr   rp  
vocab_sizer.   rd   r   rq  output_hidden_sizer   r   lm_headr^  )r`   ra   rp  rt  rc   r#   r$   rT   ]  s   

zHubertForCTC.__init__c                 C   sv   | j }|durt| jdddu rtd| d|du r,t| jdddur,td dS |dur9| j|dd dS dS )a'  
        This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
        passing `target_lang=...` to `from_pretrained(...)`.

        This method is **not** supposed to be called by the user and is prone to be changed in the future.
        Nr  zCannot pass `target_lang`: z- if `config.adapter_attn_dim` is not defined.z)By default `target_lang` is set to 'eng'.T)
force_load)rp  r  ra   r.   loggerinfoload_adapter)r`   rp  r#   r#   r$   tie_weightst  s   zHubertForCTC.tie_weightsc                 C      t dt |   dS )
        Calling this function will disable the gradient computation for the feature encoder so that its parameter will
        not be updated during training.
        The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. Please use the equivalent `freeze_feature_encoder` method instead.Nr   r   r   freeze_feature_encoderr`   r#   r#   r$   freeze_feature_extractor  
   z%HubertForCTC.freeze_feature_extractorc                 C      | j j  dS r|  Nr6  rU  r   r  r#   r#   r$   r       z#HubertForCTC.freeze_feature_encoderc                 C      | j  D ]}d|_qdS z
        Calling this function will disable the gradient computation for the base model so that its parameters will not
        be updated during training. Only the classification head will be updated.
        FNr6  r   r   r   r#   r#   r$   freeze_base_model     zHubertForCTC.freeze_base_model)
checkpointrg  rO  expected_outputexpected_lossr   r   r   r  r  labelsr   c              
   C   st  |dur|n| j j}| j|||||d}|d }| |}| |}	d}
|dur| | j jkr9td| j j |dur?|ntj	|tj
d}| |dtj
}|dk}|d}||}tjj|	dtjddd}tjjjd	d
 tjj||||| j j| j j| j jd}
W d   n1 sw   Y  |s|	f|td  }|
dur|
f| S |S t|
|	|j|jdS )a  
        labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
            Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
            the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
            All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
            config.vocab_size - 1]`.
        Nrh  r   z$Label values must be <= vocab_size: r+   r&   )r   r,   r   F)enabled)blank	reductionzero_infinitylosslogitsrg   r!  )ra   ri  r6  r   ru  r   rs  r.   r   	ones_likerJ  rG  r3   r$  masked_selectr   r   log_softmaxfloat32rt   backendscudnnflagsctc_losspad_token_idctc_loss_reductionctc_zero_infinity_HIDDEN_STATES_START_POSITIONr   rg   r!  )r`   r   r   r   r  r  r  r   rg   r  r  rE   labels_masktarget_lengthsflattened_targets	log_probsoutputr#   r#   r$   rh     sN   



zHubertForCTC.forwardre   rl  )rk   rl   rm   r   r   rT   rz  r  r  r  r   rm  r   _CHECKPOINT_FOR_DOCr   rn  _CTC_EXPECTED_OUTPUT_CTC_EXPECTED_LOSSr   r   r8   r   r   rh   rn   r#   r#   rc   r$   ro  W  sD    

ro  z
    Hubert Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like
    SUPERB Keyword Spotting.
    c                       s   e Zd Z fddZdd Zdd Zdd Zeee	e
eed	eed
					ddeej deej dee dee dee deej deeef fddZ  ZS )HubertForSequenceClassificationc                    s   t  | t|dr|jrtdt|| _|jd }|jr*t	
t|| | _t	|j|j| _t	|j|j| _|   d S )Nrq  z]Sequence classification does not support the use of Hubert adapters (config.add_adapter=True)r   )rS   rT   r   rq  r.   rT  r6  r  use_weighted_layer_sumr   rY  r   r=   layer_weightsr   r   classifier_proj_size	projector
num_labels
classifierr^  )r`   ra   
num_layersrc   r#   r$   rT     s   

z(HubertForSequenceClassification.__init__c                 C   r{  )z
        Calling this function will disable the gradient computation for the feature encoder so that its parameters will
        not be updated during training.
        r}  Nr~  r  r#   r#   r$   r    r  z8HubertForSequenceClassification.freeze_feature_extractorc                 C   r  r  r  r  r#   r#   r$   r    r  z6HubertForSequenceClassification.freeze_feature_encoderc                 C   r  r  r  r   r#   r#   r$   r  !  r  z1HubertForSequenceClassification.freeze_base_modelaudio)r  rg  rO  modalityr  r  Nr   r   r   r  r  r  r   c                 C   s`  |dur|n| j j}| j jrdn|}| j|||||d}| j jrB|t }tj|dd}tjj	| j
dd}	||	ddd jdd}n|d }| |}|du rV|jdd}
n| |jd |}d|| < |jdd|jdddd }
| |
}d}|durt }||d| j j|d}|s|f|td  }|dur|f| S |S t|||j|jd	S )
a  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        NTrh  r   r   r&   r   r   r  )ra   ri  r  r6  r  r   stackr   r   r   r  r   r3   r  r7  rN  r   r  r   r  r   rg   r!  )r`   r   r   r   r  r  r  r   rg   norm_weightspooled_outputpadding_maskr  r  loss_fctr  r#   r#   r$   rh   )  sF   

 
z'HubertForSequenceClassification.forwardrl  )rk   rl   rm   rT   r  r  r  r   rm  r   _SEQ_CLASS_CHECKPOINTr   rn  _SEQ_CLASS_EXPECTED_OUTPUT_SEQ_CLASS_EXPECTED_LOSSr   r   r   r8   r   r   rh   rn   r#   r#   rc   r$   r    sD    	
r  r   )Gr   r   typingr   r   r   numpyr/   r   torch.utils.checkpointr   torch.nnr   activationsr   integrations.deepspeedr	   modeling_outputsr
   r   r   modeling_utilsr   r   r   r   r   r   r   configuration_hubertr   
get_loggerrk   rw  r  rn  r  _EXPECTED_OUTPUT_SHAPEr  r  r  r  r  $HUBERT_PRETRAINED_MODEL_ARCHIVE_LISTr   r   rS  ndarrayrL   ModulerN   ro   ru   r{   r   r   r   r   r   r   r   r  r  r  r4  r5  HUBERT_START_DOCSTRINGrm  rT  ro  r  r#   r#   r#   r$   <module>   s   


x(,  #.RU@&  