o
    h"                     @   s   d Z ddlmZ ddlmZmZmZmZ ddlm	Z	 ddl
mZ ddlmZ er0ddlmZmZ eeZd	d	d	d
ZG dd de	ZG dd deZdS )z OpenAI ImageGPT configuration    OrderedDict)TYPE_CHECKINGAnyMappingOptional   )PretrainedConfig)
OnnxConfig)logging)FeatureExtractionMixin
TensorType )zopenai/imagegpt-smallzopenai/imagegpt-mediumzopenai/imagegpt-largec                       s\   e Zd ZdZdZdgZdddddZ			
															d fdd	Z  ZS )ImageGPTConfigam  
    This is the configuration class to store the configuration of a [`ImageGPTModel`] or a [`TFImageGPTModel`]. It is
    used to instantiate a GPT-2 model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the ImageGPT
    [openai/imagegpt-small](https://huggingface.co/openai/imagegpt-small) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 512):
            Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`ImageGPTModel`] or [`TFImageGPTModel`].
        n_positions (`int`, *optional*, defaults to 32*32):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_embd (`int`, *optional*, defaults to 512):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        n_inner (`int`, *optional*, defaults to None):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"quick_gelu"`):
            Activation function (can be one of the activation functions defined in src/transformers/activations.py).
            Defaults to "quick_gelu".
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`int`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        scale_attn_weights (`bool`, *optional*, defaults to `True`):
            Scale attention weights by dividing by sqrt(hidden_size)..
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
            Whether to additionally scale attention weights by `1 / layer_idx + 1`.
        reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
            Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
            dot-product/softmax to float() when training with mixed precision.

    Example:

    ```python
    >>> from transformers import ImageGPTConfig, ImageGPTModel

    >>> # Initializing a ImageGPT configuration
    >>> configuration = ImageGPTConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = ImageGPTModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```imagegptpast_key_valuesn_embdn_positionsn_headn_layer)hidden_sizemax_position_embeddingsnum_attention_headsnum_hidden_layers              N
quick_gelu皙?h㈵>{Gz?TFc                    s   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|| _t jdd|i| d S )Ntie_word_embeddings )
vocab_sizer   r   r   r   n_inneractivation_functionresid_pdrop
embd_pdrop
attn_pdroplayer_norm_epsiloninitializer_rangescale_attn_weights	use_cachescale_attn_by_inverse_layer_idxreorder_and_upcast_attnr#   super__init__)selfr%   r   r   r   r   r&   r'   r(   r)   r*   r+   r,   r-   r.   r#   r/   r0   kwargs	__class__r$   i/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/imagegpt/configuration_imagegpt.pyr2   n   s$   zImageGPTConfig.__init__)r   r   r   r   r   Nr   r    r    r    r!   r"   TTFFF)	__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr2   __classcell__r$   r$   r5   r7   r   %   s6    ?	r   c                   @   sx   e Zd Zedeeeeef f fddZ									dd
ddededede	d dedededeee
f fddZdS )ImageGPTOnnxConfigreturnc                 C   s   t ddddfgS )N	input_idsbatchsequence)r      r   )r3   r$   r$   r7   inputs   s   zImageGPTOnnxConfig.inputsrE   FNr       preprocessorr   
batch_size
seq_lengthis_pair	frameworkr   num_channelsimage_widthimage_heightc	                 C   s$   |  ||||}	t||	|d}
|
S )a  
        Generate inputs to provide to the ONNX exporter for the specific framework

        Args:
            preprocessor ([`PreTrainedTokenizerBase`] or [`FeatureExtractionMixin`]):
                The preprocessor associated with this model configuration.
            batch_size (`int`, *optional*, defaults to -1):
                The batch size to export the model for (-1 means dynamic axis).
            num_choices (`int`, *optional*, defaults to -1):
                The number of candidate answers provided for multiple choice task (-1 means dynamic axis).
            seq_length (`int`, *optional*, defaults to -1):
                The sequence length to export the model for (-1 means dynamic axis).
            is_pair (`bool`, *optional*, defaults to `False`):
                Indicate if the input is a pair (sentence 1, sentence 2)
            framework (`TensorType`, *optional*, defaults to `None`):
                The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for.
            num_channels (`int`, *optional*, defaults to 3):
                The number of channels of the generated images.
            image_width (`int`, *optional*, defaults to 40):
                The width of the generated images.
            image_height (`int`, *optional*, defaults to 40):
                The height of the generated images.

        Returns:
            Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
        )imagesreturn_tensors)_generate_dummy_imagesdict)r3   rI   rJ   rK   rL   rM   rN   rO   rP   input_imagerF   r$   r$   r7   generate_dummy_inputs   s   &z(ImageGPTOnnxConfig.generate_dummy_inputs)rE   rG   FNr   rH   rH   )r8   r9   r:   propertyr   strintrF   boolr   r   rV   r$   r$   r$   r7   r@      s:     
	

r@   N)r;   collectionsr   typingr   r   r   r   configuration_utilsr	   onnxr
   utilsr   r   r   r   
get_loggerr8   logger&IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAPr   r@   r$   r$   r$   r7   <module>   s   
s