o
    hr                     @   st   d Z ddlmZmZmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZmZmZmZ ddlmZ G d	d
 d
e
ZdS )z
Processor class for Llava.
    )ListOptionalUnion   )BatchFeature)
ImageInput)ProcessorMixin)PaddingStrategyPreTokenizedInput	TextInputTruncationStrategy)
TensorTypec                       s   e Zd ZdZddgZdZdZd fdd	Zddd	ddej	fd
e
eeee ee f dede
eeef de
eeef dee
eef  defddZdd Zdd Zedd Z  ZS )LlavaProcessora)  
    Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor.

    [`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
    [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information.

    Args:
        image_processor ([`CLIPImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerFast`], *optional*):
            The tokenizer is a required input.
    image_processor	tokenizerCLIPImageProcessor)LlamaTokenizerLlamaTokenizerFastNc                    s   t  || d S N)super__init__)selfr   r   	__class__ `/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/llava/processing_llava.pyr   /   s   zLlavaProcessor.__init__Ftextimagespadding
truncationreturn_tensorsreturnc           	      C   sJ   |dur| j ||dd }nd}| j|||||d}ti |d|idS )aK  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:
                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            truncation (`bool`, *optional*):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        N)r    pixel_values)r    r   r   
max_length)data)r   r   r   )	r   r   r   r   r   r#   r    r"   text_inputsr   r   r   __call__2   s   7
zLlavaProcessor.__call__c                 O      | j j|i |S )z
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r   batch_decoder   argskwargsr   r   r   r(   t      zLlavaProcessor.batch_decodec                 O   r'   )z
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r   decoder)   r   r   r   r-   |   r,   zLlavaProcessor.decodec                 C   s"   | j j}| jj}tt|| S r   )r   model_input_namesr   listdictfromkeys)r   tokenizer_input_namesimage_processor_input_namesr   r   r   r.      s   z LlavaProcessor.model_input_names)NN)__name__
__module____qualname____doc__
attributesimage_processor_classtokenizer_classr   r   PYTORCHr   r   r
   r   r   boolstrr	   r   r   r   r&   r(   r-   propertyr.   __classcell__r   r   r   r   r      s:    
Br   N)r7   typingr   r   r   feature_extraction_utilsr   image_utilsr   processing_utilsr   tokenization_utils_baser	   r
   r   r   utilsr   r   r   r   r   r   <module>   s   