o
    h	=                     @   s   d Z ddlZddlmZmZmZ er	 ddlmZ ddlm	Z	 e	
eZddiZG d	d
 d
eZG dd deZG dd deZdS )z OWLv2 model configuration    N)TYPE_CHECKINGDictUnion   )PretrainedConfig)loggingzgoogle/owlv2-base-patch16zIhttps://huggingface.co/google/owlv2-base-patch16/resolve/main/config.jsonc                       sb   e Zd ZdZdZ									
						d fdd	Zedeee	j
f ddfddZ  ZS )Owlv2TextConfigax  
    This is the configuration class to store the configuration of an [`Owlv2TextModel`]. It is used to instantiate an
    Owlv2 text encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Owlv2
    [google/owlv2-base-patch16](https://huggingface.co/google/owlv2-base-patch16) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the OWLv2 text model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`Owlv2TextModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 16):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the padding token in the input sequences.
        bos_token_id (`int`, *optional*, defaults to 49406):
            The id of the beginning-of-sequence token in the input sequences.
        eos_token_id (`int`, *optional*, defaults to 49407):
            The id of the end-of-sequence token in the input sequences.

    Example:

    ```python
    >>> from transformers import Owlv2TextConfig, Owlv2TextModel

    >>> # Initializing a Owlv2TextModel with google/owlv2-base-patch16 style configuration
    >>> configuration = Owlv2TextConfig()

    >>> # Initializing a Owlv2TextConfig from the google/owlv2-base-patch16 style configuration
    >>> model = Owlv2TextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```owlv2_text_model                  
quick_geluh㈵>        {Gz?      ?r       c                    s`   t  jd|||d| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddings
hidden_actlayer_norm_epsattention_dropoutinitializer_rangeinitializer_factor)selfr   r   r   r    r!   r"   r#   r$   r%   r&   r'   r   r   r   kwargs	__class__r   c/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/owlv2/configuration_owlv2.pyr   b   s   
zOwlv2TextConfig.__init__pretrained_model_name_or_pathreturnr   c                 K      |  | | j|fi |\}}|ddkr|d }d|v r:t| dr:|d | jkr:td|d  d| j d | j|fi |S )N
model_typeowlv2text_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors._set_token_in_kwargsget_config_dictgethasattrr0   loggerwarning	from_dictclsr-   r)   config_dictr   r   r,   from_pretrained      
 zOwlv2TextConfig.from_pretrained)r
   r   r   r   r   r   r   r   r   r   r   r   r   r   __name__
__module____qualname____doc__r0   r   classmethodr   strosPathLikerA   __classcell__r   r   r*   r,   r   $   s(    ; &r   c                       s^   e Zd ZdZdZ											
		d fdd	Zedeee	j
f ddfddZ  ZS )Owlv2VisionConfigaZ  
    This is the configuration class to store the configuration of an [`Owlv2VisionModel`]. It is used to instantiate
    an OWLv2 image encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the OWLv2
    [google/owlv2-base-patch16](https://huggingface.co/google/owlv2-base-patch16) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 768):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import Owlv2VisionConfig, Owlv2VisionModel

    >>> # Initializing a Owlv2VisionModel with google/owlv2-base-patch16 style configuration
    >>> configuration = Owlv2VisionConfig()

    >>> # Initializing a Owlv2VisionModel model from the google/owlv2-base-patch16 style configuration
    >>> model = Owlv2VisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```owlv2_vision_model      r   r   r   r   r   r   r   r   c                    s^   t  jdi | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _d S )Nr   )r   r   r   r   r    r!   num_channels
image_size
patch_sizer#   r$   r%   r&   r'   )r(   r   r   r    r!   rQ   rR   rS   r#   r$   r%   r&   r'   r)   r*   r   r,   r      s   
zOwlv2VisionConfig.__init__r-   r.   r   c                 K   r/   )Nr0   r1   vision_configr3   r4   r5   r6   r>   r   r   r,   rA      rB   z!Owlv2VisionConfig.from_pretrained)rO   rP   r   r   r   rO   r   r   r   r   r   r   rC   r   r   r*   r,   rM      s$    4&rM   c                       sf   e Zd ZdZdZ					d fdd	Zed	eee	j
f d
dfddZededefddZ  ZS )Owlv2Configa  
    [`Owlv2Config`] is the configuration class to store the configuration of an [`Owlv2Model`]. It is used to
    instantiate an OWLv2 model according to the specified arguments, defining the text model and vision model
    configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWLv2
    [google/owlv2-base-patch16](https://huggingface.co/google/owlv2-base-patch16) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Owlv2TextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Owlv2VisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The inital value of the *logit_scale* parameter. Default is used as per the original OWLv2
            implementation.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return a dictionary. If `False`, returns a tuple.
        kwargs (*optional*):
            Dictionary of keyword arguments.
    r1   Nr   /L
F@Tc                    sz   t  jdi | |d u ri }td |d u ri }td tdi || _tdi || _|| _|| _	|| _
d| _d S )NzJtext_config is None. Initializing the Owlv2TextConfig with default values.zNvision_config is None. initializing the Owlv2VisionConfig with default values.r   r   )r   r   r;   infor   r2   rM   rT   projection_dimlogit_scale_init_valuereturn_dictr'   )r(   r2   rT   rX   rY   rZ   r)   r*   r   r,   r     s   	


zOwlv2Config.__init__r-   r.   r   c                 K   sp   |  | | j|fi |\}}d|v r/t| dr/|d | jkr/td|d  d| j d | j|fi |S )Nr0   r3   r4   r5   )r7   r8   r:   r0   r;   r<   r=   r>   r   r   r,   rA   7  s   
 zOwlv2Config.from_pretrainedr2   rT   c                 K   s&   i }||d< ||d< | j |fi |S )z
        Instantiate a [`Owlv2Config`] (or a derived class) from owlv2 text model configuration and owlv2 vision
        model configuration.

        Returns:
            [`Owlv2Config`]: An instance of a configuration object
        r2   rT   )r=   )r?   r2   rT   r)   r@   r   r   r,   from_text_vision_configsE  s   	z$Owlv2Config.from_text_vision_configs)NNr   rV   T)rD   rE   rF   rG   r0   r   rH   r   rI   rJ   rK   rA   r   r[   rL   r   r   r*   r,   rU      s    rU   )rG   rJ   typingr   r   r   configuration_utilsr   utilsr   
get_loggerrD   r;   #OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAPr   rM   rU   r   r   r   r,   <module>   s   
rj