o
    h'                     @   sX   d Z ddlmZ ddlZddlmZ ddlmZ ddl	m
Z
mZmZ G dd	 d	eZdS )
z&
Image/Text processor class for OWLv2
    )ListN   )ProcessorMixin)BatchEncoding)is_flax_availableis_tf_availableis_torch_availablec                       sZ   e Zd ZdZddgZdZdZ fddZdddZdd Z	dd Z
dd Zdd Z  ZS )Owlv2Processora  
    Constructs an Owlv2 processor which wraps [`Owlv2ImageProcessor`] and [`CLIPTokenizer`]/[`CLIPTokenizerFast`] into
    a single processor that interits both the image processor and tokenizer functionalities. See the
    [`~OwlViTProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information.

    Args:
        image_processor ([`Owlv2ImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`]):
            The tokenizer is a required input.
    image_processor	tokenizerOwlv2ImageProcessor)CLIPTokenizerCLIPTokenizerFastc                    s   t  || d S )N)super__init__)selfr
   r   kwargs	__class__ `/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/owlv2/processing_owlv2.pyr   -   s   zOwlv2Processor.__init__N
max_lengthnpc                 K   s  |du r|du r|du rt d|durt|ts&t|tr4t|d ts4| j|f||d|g}nCt|trst|d trsg }tdd |D }|D ]$}	t|	|kr`|	dg|t|	   }	| j|	f||d|}
||
 qMntd|d	krt	j
d
d |D dd}t	j
dd |D dd}nt|dkrt rddlm} |j
dd |D dd}|j
dd |D dd}nN|dkrt rddl}|jdd |D dd}|jdd |D dd}n*|dkrt rddl}|jdd |D dd}|jdd |D dd}nt dt }
||
d< ||
d< |dur+t }
| j|fd|i|j}||
d< |dur;| j|fd|i|}|durL|durL|j|
d< |
S |dur]|dur]|j|
d< |
S |dusg|duri|
S ttdi ||dS )a/  
        Main method to prepare for the model one or several text(s) and image(s). This method forwards the `text` and
        `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode:
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
            `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.
            query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The query image to be prepared, one query image is expected per target image to be queried. Each image
                can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
                should be of shape (C, H, W), where C is a number of channels, H and W are image height and width.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        NzXYou have to specify at least one text or query image or image. All three cannot be none.r   )paddingreturn_tensorsc                 S   s   g | ]}t |qS r   )len).0tr   r   r   
<listcomp>c       z+Owlv2Processor.__call__.<locals>.<listcomp> zLInput text should be a string, a list of strings or a nested list of stringsr   c                 S      g | ]}|d  qS 	input_idsr   r   encodingr   r   r   r   p   r   )axisc                 S   r!   attention_maskr   r$   r   r   r   r   q   r   jaxc                 S   r!   r"   r   r$   r   r   r   r   v   r   c                 S   r!   r'   r   r$   r   r   r   r   w   r   ptc                 S   r!   r"   r   r$   r   r   r   r   |   r   )dimc                 S   r!   r'   r   r$   r   r   r   r   }   r   tfc                 S   r!   r"   r   r$   r   r   r   r      r   c                 S   r!   r'   r   r$   r   r   r   r      r   z/Target return tensor type could not be returnedr#   r(   r   query_pixel_valuespixel_values)datatensor_typer   )
ValueError
isinstancestrr   r   maxr   append	TypeErrorr   concatenater   	jax.numpynumpyr   torchcatr   
tensorflowstackr   r
   r.   dict)r   textimagesquery_imagesr   r   r   	encodingsmax_num_queriesr   r%   r#   r(   jnpr:   r,   r-   image_featuresr   r   r   __call__1   sv   %
"



zOwlv2Processor.__call__c                 O      | j j|i |S )z
        This method forwards all its arguments to [`OwlViTImageProcessor.post_process_object_detection`]. Please refer
        to the docstring of this method for more information.
        )r
   post_process_object_detectionr   argsr   r   r   r   rH         z,Owlv2Processor.post_process_object_detectionc                 O   rG   )z
        This method forwards all its arguments to [`OwlViTImageProcessor.post_process_one_shot_object_detection`].
        Please refer to the docstring of this method for more information.
        )r
   #post_process_image_guided_detectionrI   r   r   r   rL      rK   z2Owlv2Processor.post_process_image_guided_detectionc                 O   rG   )z
        This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r   batch_decoderI   r   r   r   rM      rK   zOwlv2Processor.batch_decodec                 O   rG   )z
        This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r   decoderI   r   r   r   rN      rK   zOwlv2Processor.decode)NNNr   r   )__name__
__module____qualname____doc__
attributesimage_processor_classtokenizer_classr   rF   rH   rL   rM   rN   __classcell__r   r   r   r   r	      s    
qr	   )rR   typingr   r9   r   processing_utilsr   tokenization_utils_baser   utilsr   r   r   r	   r   r   r   r   <module>   s   