o
    hB                     @   s   d Z ddlZddlmZ ddlmZmZmZmZm	Z	m
Z
 er*ddlmZ ddlmZ ddlmZ dd	lmZ dd
lmZ eeZddddZG dd deZG dd deZG dd deZG dd deZdS )z OWL-ViT model configuration    NOrderedDict)TYPE_CHECKINGAnyDictMappingOptionalUnion   )ProcessorMixin)
TensorType)PretrainedConfig)
OnnxConfig)loggingzJhttps://huggingface.co/google/owlvit-base-patch32/resolve/main/config.jsonzJhttps://huggingface.co/google/owlvit-base-patch16/resolve/main/config.jsonzKhttps://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json)zgoogle/owlvit-base-patch32zgoogle/owlvit-base-patch16zgoogle/owlvit-large-patch14c                       sb   e Zd ZdZdZ									
						d fdd	Zedeee	j
f ddfddZ  ZS )OwlViTTextConfiga  
    This is the configuration class to store the configuration of an [`OwlViTTextModel`]. It is used to instantiate an
    OwlViT text encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the OwlViT
    [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the OWL-ViT text model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`OwlViTTextModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 16):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the padding token in the input sequences.
        bos_token_id (`int`, *optional*, defaults to 49406):
            The id of the beginning-of-sequence token in the input sequences.
        eos_token_id (`int`, *optional*, defaults to 49407):
            The id of the end-of-sequence token in the input sequences.

    Example:

    ```python
    >>> from transformers import OwlViTTextConfig, OwlViTTextModel

    >>> # Initializing a OwlViTTextModel with google/owlvit-base-patch32 style configuration
    >>> configuration = OwlViTTextConfig()

    >>> # Initializing a OwlViTTextConfig from the google/owlvit-base-patch32 style configuration
    >>> model = OwlViTTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```owlvit_text_model                  
quick_geluh㈵>        {Gz?      ?r       c                    s`   t  jd|||d| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddings
hidden_actlayer_norm_epsattention_dropoutinitializer_rangeinitializer_factor)selfr%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r   r    r!   kwargs	__class__r"   e/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/owlvit/configuration_owlvit.pyr$   f   s   
zOwlViTTextConfig.__init__pretrained_model_name_or_pathreturnr   c                 K      |  | | j|fi |\}}|ddkr|d }d|v r:t| dr:|d | jkr:td|d  d| j d | j|fi |S )N
model_typeowlvittext_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors._set_token_in_kwargsget_config_dictgethasattrr8   loggerwarning	from_dictclsr5   r1   config_dictr"   r"   r4   from_pretrained      
 z OwlViTTextConfig.from_pretrained)r   r   r   r   r   r   r   r   r   r   r   r   r   r   __name__
__module____qualname____doc__r8   r$   classmethodr	   strosPathLikerI   __classcell__r"   r"   r2   r4   r   (   s(    ; &r   c                       s^   e Zd ZdZdZ											
		d fdd	Zedeee	j
f ddfddZ  ZS )OwlViTVisionConfigai  
    This is the configuration class to store the configuration of an [`OwlViTVisionModel`]. It is used to instantiate
    an OWL-ViT image encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the OWL-ViT
    [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 768):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import OwlViTVisionConfig, OwlViTVisionModel

    >>> # Initializing a OwlViTVisionModel with google/owlvit-base-patch32 style configuration
    >>> configuration = OwlViTVisionConfig()

    >>> # Initializing a OwlViTVisionModel model from the google/owlvit-base-patch32 style configuration
    >>> model = OwlViTVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```owlvit_vision_model      r   r
       r   r   r   r   r   c                    s^   t  jdi | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _d S )Nr"   )r#   r$   r&   r'   r(   r)   num_channels
image_size
patch_sizer+   r,   r-   r.   r/   )r0   r&   r'   r(   r)   rZ   r[   r\   r+   r,   r-   r.   r/   r1   r2   r"   r4   r$      s   
zOwlViTVisionConfig.__init__r5   r6   r   c                 K   r7   )Nr8   r9   vision_configr;   r<   r=   r>   rF   r"   r"   r4   rI      rJ   z"OwlViTVisionConfig.from_pretrained)rW   rX   r   r   r
   rW   rY   r   r   r   r   r   rK   r"   r"   r2   r4   rU      s$    4&rU   c                       sf   e Zd ZdZdZ					d fdd	Zed	eee	j
f d
dfddZededefddZ  ZS )OwlViTConfiga  
    [`OwlViTConfig`] is the configuration class to store the configuration of an [`OwlViTModel`]. It is used to
    instantiate an OWL-ViT model according to the specified arguments, defining the text model and vision model
    configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWL-ViT
    [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`OwlViTTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`OwlViTVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The inital value of the *logit_scale* parameter. Default is used as per the original OWL-ViT
            implementation.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return a dictionary. If `False`, returns a tuple.
        kwargs (*optional*):
            Dictionary of keyword arguments.
    r9   Nr   /L
F@Tc                    sz   t  jdi | |d u ri }td |d u ri }td tdi || _tdi || _|| _|| _	|| _
d| _d S )NzKtext_config is None. Initializing the OwlViTTextConfig with default values.zOvision_config is None. initializing the OwlViTVisionConfig with default values.r   r"   )r#   r$   rC   infor   r:   rU   r]   projection_dimlogit_scale_init_valuereturn_dictr/   )r0   r:   r]   ra   rb   rc   r1   r2   r"   r4   r$     s   	


zOwlViTConfig.__init__r5   r6   r   c                 K   sp   |  | | j|fi |\}}d|v r/t| dr/|d | jkr/td|d  d| j d | j|fi |S )Nr8   r;   r<   r=   )r?   r@   rB   r8   rC   rD   rE   rF   r"   r"   r4   rI   9  s   
 zOwlViTConfig.from_pretrainedr:   r]   c                 K   s&   i }||d< ||d< | j |fi |S )z
        Instantiate a [`OwlViTConfig`] (or a derived class) from owlvit text model configuration and owlvit vision
        model configuration.

        Returns:
            [`OwlViTConfig`]: An instance of a configuration object
        r:   r]   )rE   )rG   r:   r]   r1   rH   r"   r"   r4   from_text_vision_configsG  s   	z%OwlViTConfig.from_text_vision_configs)NNr   r_   T)rL   rM   rN   rO   r8   r$   rP   r	   rQ   rR   rS   rI   r   rd   rT   r"   r"   r2   r4   r^     s    r^   c                       s   e Zd Zedeeeeef f fddZedeeeeef f fddZede	fddZ
				dd
ddededed deeef f
 fddZedefddZ  ZS )OwlViTOnnxConfigr6   c                 C   s0   t ddddfdddddd	fd
dddfgS )N	input_idsbatchsequence)r      pixel_valuesrZ   heightwidth)r   ri      r
   attention_maskr   r0   r"   r"   r4   inputsX  s   zOwlViTOnnxConfig.inputsc                 C   s0   t dddifdddifdddifdddifgS )Nlogits_per_imager   rg   logits_per_texttext_embedsimage_embedsr   ro   r"   r"   r4   outputsb  s   



zOwlViTOnnxConfig.outputsc                 C      dS )Ng-C6?r"   ro   r"   r"   r4   atol_for_validationm     z$OwlViTOnnxConfig.atol_for_validationN	processorr   
batch_size
seq_length	frameworkr   c                    s6   t  j|j|||d}t  j|j||d}i ||S )N)r{   r|   r}   )r{   r}   )r#   generate_dummy_inputs	tokenizerimage_processor)r0   rz   r{   r|   r}   text_input_dictimage_input_dictr2   r"   r4   r~   q  s   
z&OwlViTOnnxConfig.generate_dummy_inputsc                 C   rv   )N   r"   ro   r"   r"   r4   default_onnx_opset  rx   z#OwlViTOnnxConfig.default_onnx_opset)ry   ry   N)rL   rM   rN   propertyr   rQ   intrp   ru   floatrw   r   r   r~   r   rT   r"   r"   r2   r4   re   W  s.     	 

re   )rO   rR   collectionsr   typingr   r   r   r   r   r	   processing_utilsr   utilsr   configuration_utilsr   onnxr   r   
get_loggerrL   rC   $OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAPr   rU   r^   re   r"   r"   r"   r4   <module>   s&    
qiU