o
    h                      @   sD   d Z ddlmZ ddlmZ eeZdddZG dd deZ	d	S )
z Phi model configuration   )PretrainedConfig)loggingzAhttps://huggingface.co/susnato/phi-1_dev/resolve/main/config.jsonzChttps://huggingface.co/susnato/phi-1_5_dev/resolve/main/config.json)zsusnato/phi-1_devzsusnato/phi-1_5_devc                       s\   e Zd ZdZdZdgZ												
											d fdd	Zdd Z  ZS )	PhiConfiga  
    This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Phi
    [susnato/phi-1_dev](https://huggingface.co/susnato/phi-1_dev).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 51200):
            Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`PhiModel`].
        hidden_size (`int`, *optional*, defaults to 2048):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        resid_pdrop (`float`, *optional*, defaults to 0.0):
            Dropout probability for mlp outputs.
        embd_pdrop (`int`, *optional*, defaults to 0.0):
            The dropout ratio for the embeddings.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio after computing the attention scores.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
            tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
            is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
            is an experimental feature, subject to breaking API changes in future versions.
        partial_rotary_factor (`float`, *optional*, defaults to 0.5):
            Percentage of the query and keys which will have rotary embedding.
        qk_layernorm (`bool`, *optional*, defaults to `False`):
            Whether or not to normalize the Queries and Keys after projecting the hidden states
        bos_token_id (`int`, *optional*, defaults to 1):
            Denotes beginning of sequences token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            Denotes end of sequences token id.

    Example:

    ```python
    >>> from transformers import PhiModel, PhiConfig

    >>> # Initializing a Phi-1 style configuration
    >>> configuration = PhiConfig.from_pretrained("susnato/phi-1_dev")

    >>> # Initializing a model from the configuration
    >>> model = PhiModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```phipast_key_values                         gelu_new{Gz?h㈵>TF     @N      ?      c                    s   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|| _|   t jd|||d| d S )N)bos_token_ideos_token_idtie_word_embeddings )
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsresid_pdrop
embd_pdropattention_dropout
hidden_actmax_position_embeddingsinitializer_rangelayer_norm_eps	use_cache
rope_thetarope_scalingpartial_rotary_factorqk_layernorm_rope_scaling_validationsuper__init__)selfr   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r   r%   r&   r'   r(   r   r   kwargs	__class__r   _/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/phi/configuration_phi.pyr+   n   s2   
zPhiConfig.__init__c                 C   s   | j du rdS t| j trt| j dkrtd| j  | j dd}| j dd}|du s2|dvr9td| |du sFt|trF|dkrMtd	| dS )
z<
        Validate the `rope_scaling` configuration.
        Nr   zS`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, got typefactor)lineardynamiczF`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got g      ?z7`rope_scaling`'s factor field must be a float > 1, got )r&   
isinstancedictlen
ValueErrorgetfloat)r,   rope_scaling_typerope_scaling_factorr   r   r0   r)      s"   
z"PhiConfig._rope_scaling_validation)r   r   r	   r
   r   r   r   r   r   r   r   r   TFr   Nr   Fr   r   )	__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer+   r)   __classcell__r   r   r.   r0   r      s4    K3r   N)
r@   configuration_utilsr   utilsr   
get_loggerr=   logger!PHI_PRETRAINED_CONFIG_ARCHIVE_MAPr   r   r   r   r0   <module>   s   
