o
    hSu                     @   s  d Z ddlZddlmZmZmZmZ ddlZddlZddlm	Z	 ddl
mZmZ ddlmZ ddlmZmZmZ dd	lmZ dd
lmZmZ ddlmZmZmZmZ ddlmZ ee Z!dZ"dZ#dgZ$G dd de	j%Z&G dd de	j%Z'G dd de	j%Z(G dd de	j%Z)G dd de	j%Z*G dd de	j%Z+G dd de	j%Z,G dd de	j%Z-G d d! d!e	j%Z.G d"d# d#e	j%Z/G d$d% d%eZ0d&Z1d'Z2ed(e1G d)d* d*e0Z3ed+e1G d,d- d-e0Z4dS ).z PyTorch ViViT model.    N)OptionalSetTupleUnion)nn)CrossEntropyLossMSELoss   )ACT2FN)BaseModelOutputBaseModelOutputWithPoolingImageClassifierOutput)PreTrainedModel) find_pruneable_heads_and_indicesprune_linear_layer)add_start_docstrings%add_start_docstrings_to_model_forwardloggingreplace_return_docstrings   )VivitConfigzgoogle/vivit-b-16x2-kinetics400r   c                       (   e Zd ZdZ fddZdd Z  ZS )VivitTubeletEmbeddingsa  
    Construct Vivit Tubelet embeddings.

    This module turns a batch of videos of shape (batch_size, num_frames, num_channels, height, width) into a tensor of
    shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder.

    The seq_len (the number of patches) equals (number of frames // tubelet_size[0]) * (height // tubelet_size[1]) *
    (width // tubelet_size[2]).
    c                    s|   t    |j| _|j| _|j| _| j| jd  | j| jd   | j| jd   | _|j| _t	j
|j|j|j|jd| _d S )N   r   r   )kernel_sizestride)super__init__
num_frames
image_sizetubelet_size
patch_sizenum_patcheshidden_size	embed_dimr   Conv3dnum_channels
projectionselfconfig	__class__ ^/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/vivit/modeling_vivit.pyr   8   s   
zVivitTubeletEmbeddings.__init__c              
   C   s   |j \}}}}}|| jks|| jkr%td| d| d| j d| j d	|ddddd	}| |}| |ddd}|S )
NzInput image size (*z) doesn't match model (z).r   r   r   r	      )shaper   
ValueErrorpermuter'   flatten	transpose)r)   pixel_values
batch_sizer   r&   heightwidthxr-   r-   r.   forwardH   s    
zVivitTubeletEmbeddings.forward__name__
__module____qualname____doc__r   r;   __classcell__r-   r-   r+   r.   r   -   s    
r   c                       r   )VivitEmbeddingsz
    Vivit Embeddings.

    Creates embeddings from a video using VivitTubeletEmbeddings, adds CLS token and positional embeddings.
    c                    sd   t    ttdd|j| _t|| _	ttd| j	j
d |j| _t|j| _|| _d S )Nr   )r   r   r   	Parametertorchzerosr#   	cls_tokenr   patch_embeddingsr"   position_embeddingsDropouthidden_dropout_probdropoutr*   r(   r+   r-   r.   r   _   s   


zVivitEmbeddings.__init__c                 C   sP   |j d }| |}| j|ddg}tj||fdd}|| j }| |}|S Nr   r   dim)r1   rG   rF   tilerD   catrH   rK   )r)   r6   r7   
embeddings
cls_tokensr-   r-   r.   r;   k   s   



zVivitEmbeddings.forwardr<   r-   r-   r+   r.   rB   X   s    rB   c                
       sv   e Zd Zdeddf fddZdejdejfddZ		dd
eej de	de
eejejf eej f fddZ  ZS )VivitSelfAttentionr*   returnNc                    s   t    |j|j dkr t|ds td|jf d|j d|j| _t|j|j | _| j| j | _t	j
|j| j|jd| _t	j
|j| j|jd| _t	j
|j| j|jd| _t	|j| _d S )Nr   embedding_sizezThe hidden size z4 is not a multiple of the number of attention heads .)bias)r   r   r#   num_attention_headshasattrr2   intattention_head_sizeall_head_sizer   Linearqkv_biasquerykeyvaluerI   attention_probs_dropout_probrK   r(   r+   r-   r.   r   }   s   
zVivitSelfAttention.__init__r:   c                 C   s6   |  d d | j| jf }||}|ddddS )Nr   r   r   r	   )sizerX   r[   viewr3   )r)   r:   new_x_shaper-   r-   r.   transpose_for_scores   s   
z'VivitSelfAttention.transpose_for_scoresF	head_maskoutput_attentionsc                 C   s   |  |}| | |}| | |}| |}t||dd}|t| j	 }t
jj|dd}	| |	}	|d urA|	| }	t|	|}
|
dddd }
|
 d d | jf }|
|}
|rj|
|	f}|S |
f}|S )Nrc   rM   r   r   r   r	   )r_   rg   r`   ra   rD   matmulr5   mathsqrtr[   r   
functionalsoftmaxrK   r3   
contiguousrd   r\   re   )r)   hidden_statesrh   ri   mixed_query_layer	key_layervalue_layerquery_layerattention_scoresattention_probscontext_layernew_context_layer_shapeoutputsr-   r-   r.   r;      s$   



zVivitSelfAttention.forwardNF)r=   r>   r?   r   r   rD   Tensorrg   r   boolr   r   r;   rA   r-   r-   r+   r.   rS   |   s    rS   c                       sF   e Zd ZdZdeddf fddZdejdejdejfd	d
Z  Z	S )VivitSelfOutputz
    The residual connection is defined in VivitLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    r*   rT   Nc                    s.   t    t|j|j| _t|j| _d S N)	r   r   r   r]   r#   denserI   rJ   rK   r(   r+   r-   r.   r         
zVivitSelfOutput.__init__rq   input_tensorc                 C   s   |  |}| |}|S r   r   rK   r)   rq   r   r-   r-   r.   r;      s   

zVivitSelfOutput.forward)
r=   r>   r?   r@   r   r   rD   r|   r;   rA   r-   r-   r+   r.   r~      s    $r~   c                       s~   e Zd Zdeddf fddZdee ddfddZ			dd
ej	de
ej	 dedeeej	ej	f eej	 f fddZ  ZS )VivitAttentionr*   rT   Nc                    s*   t    t|| _t|| _t | _d S r   )r   r   rS   	attentionr~   outputsetpruned_headsr(   r+   r-   r.   r      s   


zVivitAttention.__init__headsc                 C   s   t |dkrd S t|| jj| jj| j\}}t| jj|| j_t| jj|| j_t| jj	|| j_	t| j
j|dd| j
_| jjt | | j_| jj| jj | j_| j|| _d S rL   )lenr   r   rX   r[   r   r   r_   r`   ra   r   r   r\   union)r)   r   indexr-   r-   r.   prune_heads   s   zVivitAttention.prune_headsFrq   rh   ri   c                 C   s4   |  |||}| |d |}|f|dd   }|S )Nr   r   )r   r   )r)   rq   rh   ri   self_outputsattention_outputrz   r-   r-   r.   r;      s   zVivitAttention.forwardr{   )r=   r>   r?   r   r   r   rZ   r   rD   r|   r   r}   r   r   r;   rA   r-   r-   r+   r.   r      s    r   c                       $   e Zd Z fddZdd Z  ZS )VivitIntermediatec                    sR   t    t|j|j| _t|j| _	t
|jtr#t|j | _d S |j| _d S r   )r   r   r   r]   r#   intermediate_sizer   rI   rJ   rK   
isinstance
hidden_actstrr
   intermediate_act_fnr(   r+   r-   r.   r      s   
zVivitIntermediate.__init__c                 C   s"   |  |}| |}| |}|S r   )r   r   rK   )r)   rq   r-   r-   r.   r;      s   


zVivitIntermediate.forwardr=   r>   r?   r   r;   rA   r-   r-   r+   r.   r      s    	r   c                       r   )VivitOutputc                    s.   t    t|j|j| _t|j| _	d S r   )
r   r   r   r]   r   r#   r   rI   rJ   rK   r(   r+   r-   r.   r     r   zVivitOutput.__init__c                 C   s    |  |}| |}|| }|S r   r   r   r-   r-   r.   r;     s   

zVivitOutput.forwardr   r-   r-   r+   r.   r         r   c                       s*   e Zd ZdZ fddZdddZ  ZS )	
VivitLayerzNThis corresponds to the EncoderBlock class in the scenic/vivit implementation.c                    sb   t    |j| _d| _t|| _t|| _t|| _	t
j|j|jd| _t
j|j|jd| _d S )Nr   eps)r   r   chunk_size_feed_forwardseq_len_dimr   r   r   intermediater   r   r   	LayerNormr#   layer_norm_epslayernorm_beforelayernorm_afterr(   r+   r-   r.   r     s   



zVivitLayer.__init__NFc                 C   s`   | j | |||d}|d }|dd  }|| }| |}| |}| ||}|f| }|S )N)ri   r   r   )r   r   r   r   r   )r)   rq   rh   ri   self_attention_outputsr   rz   layer_outputr-   r-   r.   r;   "  s   


zVivitLayer.forwardr{   r<   r-   r-   r+   r.   r     s    
r   c                       s.   e Zd Z fddZ				dddZ  ZS )	VivitEncoderc                    s:   t     | _t fddt jD | _d| _d S )Nc                    s   g | ]}t  qS r-   )r   ).0_r*   r-   r.   
<listcomp>@  s    z)VivitEncoder.__init__.<locals>.<listcomp>F)	r   r   r*   r   
ModuleListrangenum_hidden_layerslayergradient_checkpointingr(   r+   r   r.   r   =  s   
 
zVivitEncoder.__init__NFTc                 C   s   |rdnd }|r
dnd }t | jD ]8\}}	|r||f }|d ur$|| nd }
| jr6| jr6| |	j||
|}n|	||
|}|d }|rI||d f }q|rQ||f }|s_tdd |||fD S t|||dS )Nr-   r   r   c                 s   s    | ]	}|d ur|V  qd S r   r-   )r   vr-   r-   r.   	<genexpr>g  s    z'VivitEncoder.forward.<locals>.<genexpr>)last_hidden_staterq   
attentions)	enumerater   r   training_gradient_checkpointing_func__call__tupler   )r)   rq   rh   ri   output_hidden_statesreturn_dictall_hidden_statesall_self_attentionsilayer_modulelayer_head_masklayer_outputsr-   r-   r.   r;   C  s6   

zVivitEncoder.forward)NFFTr   r-   r-   r+   r.   r   <  s    	r   c                       r   )VivitPoolerc                    s*   t    t|j|j| _t | _d S r   )r   r   r   r]   r#   r   Tanh
activationr(   r+   r-   r.   r   p  s   
zVivitPooler.__init__c                 C   s(   |d d df }|  |}| |}|S )Nr   )r   r   )r)   rq   first_token_tensorpooled_outputr-   r-   r.   r;   u  s   

zVivitPooler.forwardr   r-   r-   r+   r.   r   o  r   r   c                   @   s(   e Zd ZdZeZdZdZdZdd Z	dS )VivitPreTrainedModelz
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    vivitr6   Tc                 C   s   t |tjtjfr#|jjjd| jjd |j	dur!|j	j
  dS dS t |tjrF|jjjd| jjd |jdurD|jj|j 
  dS dS t |tjr[|j	j
  |jjd dS t |tjrm|jjd| jjd dS dS )zInitialize the weightsg        )meanstdNg      ?)r   r   r]   r%   weightdatanormal_r*   initializer_rangerW   zero_	Embeddingpadding_idxr   fill_rC   )r)   moduler-   r-   r.   _init_weights  s    

z"VivitPreTrainedModel._init_weightsN)
r=   r>   r?   r@   r   config_classbase_model_prefixmain_input_namesupports_gradient_checkpointingr   r-   r-   r-   r.   r   ~  s    r   aG  
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`VivitConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
a\  
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`VivitImageProcessor`]. See
            [`VivitImageProcessor.preprocess`] for details.

        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
z_The bare ViViT Transformer model outputting raw hidden-states without any specific head on top.c                       s   e Zd Zd fdd	Zdd Zdd Zeeee	e
d										dd
eej deej dee dee dee deeej e	f fddZ  ZS )
VivitModelTc                    sX   t  | || _t|| _t|| _tj|j	|j
d| _|r#t|nd | _|   d S )Nr   )r   r   r*   rB   rQ   r   encoderr   r   r#   r   	layernormr   pooler	post_init)r)   r*   add_pooling_layerr+   r-   r.   r     s   

zVivitModel.__init__c                 C   s   | j jS r   )rQ   rG   )r)   r-   r-   r.   get_input_embeddings  s   zVivitModel.get_input_embeddingsc                 C   s*   |  D ]\}}| jj| j| qdS )z
        Prunes heads of the model.

        Args:
            heads_to_prune:
                dict of {layer_num: list of heads to prune in this layer}
        N)itemsr   r   r   r   )r)   heads_to_pruner   r   r-   r-   r.   _prune_heads  s   zVivitModel._prune_headsoutput_typer   Nr6   rh   ri   r   r   rT   c           
      C   s   |dur|n| j j}|dur|n| j j}|dur|n| j j}|du r&td| || j j}| |}| j|||||d}|d }| 	|}| j
durP| 
|nd}	|s^||	f|dd  S t||	|j|jdS )a  
        Returns:

        Examples:

        ```python
        >>> import av
        >>> import numpy as np

        >>> from transformers import VivitImageProcessor, VivitModel
        >>> from huggingface_hub import hf_hub_download

        >>> np.random.seed(0)


        >>> def read_video_pyav(container, indices):
        ...     '''
        ...     Decode the video with PyAV decoder.
        ...     Args:
        ...         container (`av.container.input.InputContainer`): PyAV container.
        ...         indices (`List[int]`): List of frame indices to decode.
        ...     Returns:
        ...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
        ...     '''
        ...     frames = []
        ...     container.seek(0)
        ...     start_index = indices[0]
        ...     end_index = indices[-1]
        ...     for i, frame in enumerate(container.decode(video=0)):
        ...         if i > end_index:
        ...             break
        ...         if i >= start_index and i in indices:
        ...             frames.append(frame)
        ...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])


        >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
        ...     '''
        ...     Sample a given number of frame indices from the video.
        ...     Args:
        ...         clip_len (`int`): Total number of frames to sample.
        ...         frame_sample_rate (`int`): Sample every n-th frame.
        ...         seg_len (`int`): Maximum allowed index of sample's last frame.
        ...     Returns:
        ...         indices (`List[int]`): List of sampled frame indices
        ...     '''
        ...     converted_len = int(clip_len * frame_sample_rate)
        ...     end_idx = np.random.randint(converted_len, seg_len)
        ...     start_idx = end_idx - converted_len
        ...     indices = np.linspace(start_idx, end_idx, num=clip_len)
        ...     indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
        ...     return indices


        >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
        >>> file_path = hf_hub_download(
        ...     repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
        ... )
        >>> container = av.open(file_path)

        >>> # sample 32 frames
        >>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
        >>> video = read_video_pyav(container=container, indices=indices)

        >>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
        >>> model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400")

        >>> # prepare video for the model
        >>> inputs = image_processor(list(video), return_tensors="pt")

        >>> # forward pass
        >>> outputs = model(**inputs)
        >>> last_hidden_states = outputs.last_hidden_state
        >>> list(last_hidden_states.shape)
        [1, 3137, 768]
        ```Nz You have to specify pixel_valuesrh   ri   r   r   r   r   )r   pooler_outputrq   r   )r*   ri   r   use_return_dictr2   get_head_maskr   rQ   r   r   r   r   rq   r   )
r)   r6   rh   ri   r   r   embedding_outputencoder_outputssequence_outputr   r-   r-   r.   r;     s4   V

zVivitModel.forward)T)NNNNN)r=   r>   r?   r   r   r   r   VIVIT_INPUTS_DOCSTRINGr   r   _CONFIG_FOR_DOCr   rD   FloatTensorr}   r   r   r;   rA   r-   r-   r+   r.   r     s0    
r   zViViT Transformer model with a video classification head on top (a linear layer on top of the final hidden state of the
[CLS] token) e.g. for Kinetics-400.c                       s   e Zd Z fddZeeeeed						dde	e
j de	e
j de	e
j de	e d	e	e d
e	e deee
j ef fddZ  ZS )VivitForVideoClassificationc                    sR   t  | |j| _t|dd| _|jdkrt|j|jnt | _	| 
  d S )NF)r   r   )r   r   
num_labelsr   r   r   r]   r#   Identity
classifierr   r(   r+   r-   r.   r   ]  s
   $z$VivitForVideoClassification.__init__r   Nr6   rh   labelsri   r   r   rT   c                 C   s   |dur|n| j j}| j|||||d}|d }| |dddddf }	d}
|durP| jdkr@t }||	d|d}
nt }||	d| j|d}
|sf|	f|dd  }|
durd|
f| S |S t|
|	|j	|j
dS )a(  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> import av
        >>> import numpy as np
        >>> import torch

        >>> from transformers import VivitImageProcessor, VivitForVideoClassification
        >>> from huggingface_hub import hf_hub_download

        >>> np.random.seed(0)


        >>> def read_video_pyav(container, indices):
        ...     '''
        ...     Decode the video with PyAV decoder.
        ...     Args:
        ...         container (`av.container.input.InputContainer`): PyAV container.
        ...         indices (`List[int]`): List of frame indices to decode.
        ...     Returns:
        ...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
        ...     '''
        ...     frames = []
        ...     container.seek(0)
        ...     start_index = indices[0]
        ...     end_index = indices[-1]
        ...     for i, frame in enumerate(container.decode(video=0)):
        ...         if i > end_index:
        ...             break
        ...         if i >= start_index and i in indices:
        ...             frames.append(frame)
        ...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])


        >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
        ...     '''
        ...     Sample a given number of frame indices from the video.
        ...     Args:
        ...         clip_len (`int`): Total number of frames to sample.
        ...         frame_sample_rate (`int`): Sample every n-th frame.
        ...         seg_len (`int`): Maximum allowed index of sample's last frame.
        ...     Returns:
        ...         indices (`List[int]`): List of sampled frame indices
        ...     '''
        ...     converted_len = int(clip_len * frame_sample_rate)
        ...     end_idx = np.random.randint(converted_len, seg_len)
        ...     start_idx = end_idx - converted_len
        ...     indices = np.linspace(start_idx, end_idx, num=clip_len)
        ...     indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
        ...     return indices


        >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
        >>> file_path = hf_hub_download(
        ...     repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
        ... )
        >>> container = av.open(file_path)

        >>> # sample 32 frames
        >>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
        >>> video = read_video_pyav(container=container, indices=indices)

        >>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
        >>> model = VivitForVideoClassification.from_pretrained("google/vivit-b-16x2-kinetics400")

        >>> inputs = image_processor(list(video), return_tensors="pt")

        >>> with torch.no_grad():
        ...     outputs = model(**inputs)
        ...     logits = outputs.logits

        >>> # model predicts one of the 400 Kinetics-400 classes
        >>> predicted_label = logits.argmax(-1).item()
        >>> print(model.config.id2label[predicted_label])
        LABEL_116
        ```Nr   r   r   rc   r   )losslogitsrq   r   )r*   r   r   r   r   r   re   r   r   rq   r   )r)   r6   rh   r   ri   r   r   rz   r   r   r   loss_fctr   r-   r-   r.   r;   i  s4   _
z#VivitForVideoClassification.forward)NNNNNN)r=   r>   r?   r   r   r   r   r   r   r   rD   r   
LongTensorr}   r   r   r;   rA   r-   r-   r+   r.   r   W  s2    
r   )5r@   rl   typingr   r   r   r   rD   torch.utils.checkpointr   torch.nnr   r   activationsr
   modeling_outputsr   r   r   modeling_utilsr   pytorch_utilsr   r   utilsr   r   r   r   configuration_vivitr   
get_loggerr=   logger_CHECKPOINT_FOR_DOCr   #VIVIT_PRETRAINED_MODEL_ARCHIVE_LISTModuler   rB   rS   r~   r   r   r   r   r   r   r   VIVIT_START_DOCSTRINGr   r   r   r-   r-   r-   r.   <module>   sT   
+$=''3 