o
    hB                     @   s   d Z ddlmZ ddlmZmZmZmZmZ ddl	m
Z
 ddlmZmZ ddlmZ er>ddlmZ dd	lmZ dd
lmZ eeZddiZg dZg dZG dd de
ZG dd deZdS )z Whisper model configuration    )OrderedDict)TYPE_CHECKINGAnyMappingOptionalUnion   )PretrainedConfig)
OnnxConfigOnnxSeq2SeqConfigWithPast)logging)FeatureExtractionMixin)PreTrainedTokenizerBase)
TensorTypezopenai/whisper-basezChttps://huggingface.co/openai/whisper-base/resolve/main/config.json)X            	   
                        :   ;   <   =   >   ?   Z   [   \   ]   ie  in  i  i  i  i  i  i  i"  i  i  i  i  i?  ia  io  ic  i  iS  ir  i9	  i	  i  i  is  i  i  i  i  i  i#  i%  i&  iC)  i"*  i,  i-  i.  ik3  i5  i5  i9  i;  i@  iA  iHF  iK  i6L  iP  i!W  iY  ii  iu  iv  i  i  i[  i-  ie  i  i  Q  i      )Vr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   ig  i  i
  i  ii  i}  i  i  i  i  iF  i=  i  i	  iC
  i  i  i  i  i  iy  iW  i;  i  i  ii  ie#  i$  i(  i*  i.  i/  i+0  i1  i5  iM7  i+9  i;  i=  i@  i@  iG  iJ  ikN  iT  iW  if  i1f  iCg  iwn  is  i{  i.~  i~  i  io  iA  i  iN  iR  r(   r)   i  c                %       s   e Zd ZdZdZdgZdddZddd	d
d	d
ddddddddddddddddddddddgddddddddddf% fdd	Z  ZS ) WhisperConfiga#  
    This is the configuration class to store the configuration of a [`WhisperModel`]. It is used to instantiate a
    Whisper model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Whisper
    [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 51865):
            Vocabulary size of the Whisper model. Defines the number of different tokens that can be represented by the
            `decoder_input_ids` passed when calling [`WhisperModel`]
        num_mel_bins (`int`, *optional*, defaults to 80):
            Number of mel features used per input features. Should correspond to the value used in the
            `WhisperProcessor` class.
        encoder_layers (`int`, *optional*, defaults to 4):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 4):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 6):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 6):
            Number of attention heads for each attention layer in the Transformer decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 1536):
            Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 1536):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_start_token_id (`int`, *optional*, defaults to 50257):
            Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
            are provided to the `generate` function. It is used to guide the model`s generation process depending on
            the task.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        is_encoder_decoder (`bool`, *optional*, defaults to `True`):
            Whether the model is used as an encoder/decoder or not.
        activation_function (`str`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        d_model (`int`, *optional*, defaults to 384):
            Dimensionality of the layers.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        scale_embedding (`bool`, *optional*, defaults to False):
            Scale embeddings by diving by sqrt(d_model).
        max_source_positions (`int`, *optional*, defaults to 1500):
            The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
        max_target_positions (`int`, *optional*, defaults to 448):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        pad_token_id (`int`, *optional*, defaults to 50256):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 50256):
            Begin of stream token id.
        eos_token_id (`int`, *optional*, defaults to 50256):
            End of stream token id.
        suppress_tokens (`List[int]`, *optional*):
            A list containing the non-speech tokens that will be used by the logit processor in the `generate`
            function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the
            `multilingual` model.
        begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`):
            A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as
            the token for `" "` (`blank_token_id`) and the `eos_token_id`
        use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
            Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
            instance of [`WhisperForAudioClassification`].
        classifier_proj_size (`int`, *optional*, defaults to 256):
            Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an
            instance of [`WhisperForAudioClassification`].
        apply_spec_augment (`bool`, *optional*, defaults to `False`):
            Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
            [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
            Recognition](https://arxiv.org/abs/1904.08779).
        mask_time_prob (`float`, *optional*, defaults to 0.05):
            Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
            procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If
            reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
            masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
            actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`.
        mask_time_length (`int`, *optional*, defaults to 10):
            Length of vector span along the time axis.
        mask_time_min_masks (`int`, *optional*, defaults to 2),:
            The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
            irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
            mask_time_min_masks''
        mask_feature_prob (`float`, *optional*, defaults to 0.0):
            Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
            masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
            the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
            span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
            may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
            True`.
        mask_feature_length (`int`, *optional*, defaults to 10):
            Length of vector span along the feature axis.
        mask_feature_min_masks (`int`, *optional*, defaults to 0),:
            The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
            step, irrespectively of `mask_feature_prob`. Only relevant if
            `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
        median_filter_width (`int`, *optional*, defaults to 7):
            Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps.
            Should be an odd number.

    Example:

    ```python
    >>> from transformers import WhisperConfig, WhisperModel

    >>> # Initializing a Whisper tiny style configuration
    >>> configuration = WhisperConfig()

    >>> # Initializing a model (with random weights) from the tiny style configuration
    >>> model = WhisperModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```whisperpast_key_valuesencoder_attention_headsd_model)num_attention_headshidden_sizei  P         i   g        r'   Tgelui  g{Gz?Fi  i  iP  N      g?r   r   r   r   c&           '   
      s   || _ || _|| _|| _|| _|| _|| _|| _|| _|| _	|| _
|| _|| _|| _|	| _|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _| | _|!| _|"| _|#| _|$| _|%| _t j d|||||||d|& d S )N)pad_token_idbos_token_ideos_token_idis_encoder_decoderdecoder_start_token_idsuppress_tokensbegin_suppress_tokens )!
vocab_sizenum_mel_binsr.   encoder_layersr-   decoder_layersdecoder_attention_headsdecoder_ffn_dimencoder_ffn_dimdropoutattention_dropoutactivation_dropoutactivation_functioninit_stdencoder_layerdropdecoder_layerdrop	use_cachenum_hidden_layersscale_embeddingmax_source_positionsmax_target_positionsclassifier_proj_sizeuse_weighted_layer_sumapply_spec_augmentmask_time_probmask_time_lengthmask_time_min_masksmask_feature_probmask_feature_lengthmask_feature_min_masksmedian_filter_widthsuper__init__)'selfr?   r@   rA   r-   rB   rC   rD   rE   rK   rL   r;   rM   r:   rI   r.   rF   rG   rH   rJ   rO   rP   rQ   r7   r8   r9   r<   r=   rS   rR   rT   rU   rV   rW   rX   rY   rZ   r[   kwargs	__class__r>   g/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/whisper/configuration_whisper.pyr]      sT   )
zWhisperConfig.__init__)	__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr]   __classcell__r>   r>   r`   rb   r*   >   sX     
r*   c                       s   e Zd Zedeeeeef f fddZ								dd
ed dedede	de
d dedededeeef f fddZedefddZ  ZS )WhisperOnnxConfigreturnc                 C   sP   t dddddfg}| jrddi|d< nddd	|d< | jr&| j|d
d |S )Ninput_featuresbatchfeature_sizeencoder_sequence)r   r   r   r   decoder_input_idsdecoder_sequence)r   r   inputs)	direction)r   use_pastfill_with_past_key_values_)r^   common_inputsr>   r>   rb   rs      s   zWhisperOnnxConfig.inputsFN"V        @r5   preprocessor)r   r   
batch_size
seq_lengthis_pair	frameworkr   sampling_ratetime_duration	frequencyc	              	      s   t  }	tj| |j|||||d}
|
d jd }| jr|d n|}t |j||||}|
d|	d< |d|	d< d|v rD|d|	d< |	S )N)r{   r|   r   r   r   r   rm   r   rq   r,   )	r   r
   generate_dummy_inputsfeature_extractorshaperu   r\   	tokenizerpop)r^   r{   r|   r}   r~   r   r   r   r   dummy_inputsencoder_inputsencoder_sequence_lengthdecoder_inputsr`   r>   rb   r   1  s(   	z'WhisperOnnxConfig.generate_dummy_inputsc                 C   s   dS )NgMbP?r>   )r^   r>   r>   rb   atol_for_validationU  s   z%WhisperOnnxConfig.atol_for_validation)rx   rx   FNry   rz   r5   )rc   rd   re   propertyr   strintrs   r   boolr   floatr   r   r   rj   r>   r>   r`   rb   rk     s>     	

$rk   N)rf   collectionsr   typingr   r   r   r   r   configuration_utilsr	   onnxr
   r   utilsr   feature_extraction_utilsr   tokenization_utils_baser   r   
get_loggerrc   logger%WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAPNON_SPEECH_TOKENSNON_SPEECH_TOKENS_MULTIr*   rk   r>   r>   r>   rb   <module>   s$   
 b