o
    hi                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ eeZd	d
iZG dd deZG dd de
ZdS )z YOLOS model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)loggingzhustvl/yolos-smallzBhttps://huggingface.co/hustvl/yolos-small/resolve/main/config.jsonc                       sV   e Zd ZdZdZddddddddd	d
dgddddddddddddf fdd	Z  ZS )YolosConfiga  
    This is the configuration class to store the configuration of a [`YolosModel`]. It is used to instantiate a YOLOS
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the YOLOS
    [hustvl/yolos-base](https://huggingface.co/hustvl/yolos-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`List[int]`, *optional*, defaults to `[512, 864]`):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        num_detection_tokens (`int`, *optional*, defaults to 100):
            The number of detection tokens.
        use_mid_position_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to use the mid-layer position encodings.
        auxiliary_loss (`bool`, *optional*, defaults to `False`):
            Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
        class_cost (`float`, *optional*, defaults to 1):
            Relative weight of the classification error in the Hungarian matching cost.
        bbox_cost (`float`, *optional*, defaults to 5):
            Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
        giou_cost (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
        bbox_loss_coefficient (`float`, *optional*, defaults to 5):
            Relative weight of the L1 bounding box loss in the object detection loss.
        giou_loss_coefficient (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss in the object detection loss.
        eos_coefficient (`float`, *optional*, defaults to 0.1):
            Relative classification weight of the 'no-object' class in the object detection loss.

    Example:

    ```python
    >>> from transformers import YolosConfig, YolosModel

    >>> # Initializing a YOLOS hustvl/yolos-base style configuration
    >>> configuration = YolosConfig()

    >>> # Initializing a model (with random weights) from the hustvl/yolos-base style configuration
    >>> model = YolosModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```yolosi      i   gelug        g{Gz?g-q=i   i`     r   Td   F         g?c                    s   t  jdi | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d S )N )super__init__hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_biasnum_detection_tokensuse_mid_position_embeddingsauxiliary_loss
class_cost	bbox_cost	giou_costbbox_loss_coefficientgiou_loss_coefficienteos_coefficient)selfr   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   kwargs	__class__r   c/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/yolos/configuration_yolos.pyr   m   s.   
zYolosConfig.__init__)__name__
__module____qualname____doc__
model_typer   __classcell__r   r   r.   r0   r
   #   s4    Gr
   c                   @   s\   e Zd ZedZedeeee	ef f fddZ
edefddZede	fddZd	S )
YolosOnnxConfigz1.11returnc                 C   s   t ddddddfgS )Npixel_valuesbatchr!   heightwidth)r   r   r   r   r   r,   r   r   r0   inputs   s   zYolosOnnxConfig.inputsc                 C      dS )Ng-C6?r   r=   r   r   r0   atol_for_validation      z#YolosOnnxConfig.atol_for_validationc                 C   r?   )Nr   r   r=   r   r   r0   default_onnx_opset   rA   z"YolosOnnxConfig.default_onnx_opsetN)r1   r2   r3   r   parsetorch_onnx_minimum_versionpropertyr   strintr>   floatr@   rB   r   r   r   r0   r7      s    
 r7   N)r4   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr   utilsr	   
get_loggerr1   logger#YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAPr
   r7   r   r   r   r0   <module>   s   
 