o
    h                     @   sB   d Z ddlmZ ddlmZ eeZddiZG dd deZ	dS )	z YOSO model configuration   )PretrainedConfig)loggingzuw-madison/yoso-4096zDhttps://huggingface.co/uw-madison/yoso-4096/resolve/main/config.jsonc                       sR   e Zd ZdZdZ											
										
		d fdd	Z  ZS )
YosoConfiga  
    This is the configuration class to store the configuration of a [`YosoModel`]. It is used to instantiate an YOSO
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the YOSO
    [uw-madison/yoso-4096](https://huggingface.co/uw-madison/yoso-4096) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50265):
            Vocabulary size of the YOSO model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`YosoModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`YosoModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
        use_expectation (`bool`, *optional*, defaults to `True`):
            Whether or not to use YOSO Expectation. Overrides any effect of num_hash.
        hash_code_len (`int`, *optional*, defaults to 9):
            The length of hashes generated by the hash functions.
        num_hash (`int`, *optional*, defaults to 64):
            Number of hash functions used in [`YosoSelfAttention`].
        conv_window (`int`, *optional*):
            Kernel size of depth-wise convolution.
        use_fast_hash (`bool`, *optional*, defaults to `False`):
            Whether or not to use custom cuda kernels which perform fast random projection via hadamard transform.
        lsh_backward (`bool`, *optional*, defaults to `True`):
            Whether or not to perform backpropagation using Locality Sensitive Hashing.

    Example:

    ```python
    >>> from transformers import YosoConfig, YosoModel

    >>> # Initializing a YOSO uw-madison/yoso-4096 style configuration
    >>> configuration = YosoConfig()

    >>> # Initializing a model (with random weights) from the uw-madison/yoso-4096 style configuration
    >>> model = YosoModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```yosoY           gelu皙?      {Gz?-q=absoluteT	   @   N       c                    s   t  jd|||d| || _|	| _|| _|| _|| _|| _|| _|| _	|| _
|| _|
| _|| _|| _|| _|| _|| _|| _|| _|| _d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizemax_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangetype_vocab_sizelayer_norm_epsposition_embedding_typeuse_expectationhash_code_lennum_hashconv_windowuse_fast_hashlsh_backward)selfr   r   r   r   r    r!   r"   r#   r   r%   r$   r&   r'   r(   r)   r*   r+   r,   r-   r   r   r   kwargs	__class__r   a/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.pyr   d   s(   
zYosoConfig.__init__)r   r   r   r   r	   r
   r   r   r   r   r   r   r   Tr   r   NTTr   r   r   )__name__
__module____qualname____doc__
model_typer   __classcell__r   r   r0   r2   r      s4    Dr   N)
r6   configuration_utilsr   utilsr   
get_loggerr3   logger"YOSO_PRETRAINED_CONFIG_ARCHIVE_MAPr   r   r   r   r2   <module>   s   
