o
    h                     @   s   d dl mZmZmZmZ ddlmZmZmZm	Z	m
Z
 ddlmZmZ e r+ddlmZ e r:d dlZddlmZmZ e	eZeeef Zee ZeeG d	d
 d
eZdS )    )AnyDictListUnion   )add_end_docstringsis_torch_availableis_vision_availableloggingrequires_backends   )PIPELINE_INIT_ARGSPipeline)
load_imageN)(MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMESc                       s|   e Zd ZdZ fddZdd Zdeeee	 f f fddZ
dd
dZdd ZdddZdddeeef fddZ  ZS )ObjectDetectionPipelinea  
    Object detection pipeline using any `AutoModelForObjectDetection`. This pipeline predicts bounding boxes of objects
    and their classes.

    Example:

    ```python
    >>> from transformers import pipeline

    >>> detector = pipeline(model="facebook/detr-resnet-50")
    >>> detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
    [{'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}, {'score': 0.999, 'label': 'bird', 'box': {'xmin': 398, 'ymin': 105, 'xmax': 767, 'ymax': 507}}]

    >>> # x, y  are expressed relative to the top left hand corner.
    ```

    Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)

    This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"object-detection"`.

    See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=object-detection).
    c                    sX   t  j|i | | jdkrtd| j dt| d t }|t	 | 
| d S )NtfzThe z is only available in PyTorch.vision)super__init__	framework
ValueError	__class__r   r   copyupdater   check_model_type)selfargskwargsmappingr    ]/var/www/html/ai/venv/lib/python3.10/site-packages/transformers/pipelines/object_detection.pyr   4   s   


z ObjectDetectionPipeline.__init__c                 K   s:   i }d|v r|d |d< i }d|v r|d |d< |i |fS )Ntimeout	thresholdr"   )r   r   preprocess_paramspostprocess_kwargsr"   r"   r#   _sanitize_parameters?   s   
z,ObjectDetectionPipeline._sanitize_parametersreturnc                    s   t  j|i |S )ai  
        Detect objects (bounding boxes & classes) in the image(s) passed as inputs.

        Args:
            images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
                The pipeline handles three types of images:

                - A string containing an HTTP(S) link pointing to an image
                - A string containing a local path to an image
                - An image loaded in PIL directly

                The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the
                same format: all as HTTP(S) links, all as local paths, or all as PIL images.
            threshold (`float`, *optional*, defaults to 0.9):
                The probability necessary to make a prediction.
            timeout (`float`, *optional*, defaults to None):
                The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
                the call may block forever.

        Return:
            A list of dictionaries or a list of list of dictionaries containing the result. If the input is a single
            image, will return a list of dictionaries, if the input is a list of several images, will return a list of
            list of dictionaries corresponding to each image.

            The dictionaries contain the following keys:

            - **label** (`str`) -- The class label identified by the model.
            - **score** (`float`) -- The score attributed by the model for that label.
            - **box** (`List[Dict[str, int]]`) -- The bounding box of detected object in image's original size.
        )r   __call__)r   r   r   r!   r"   r#   r*   H   s    z ObjectDetectionPipeline.__call__Nc                 C   s^   t ||d}t|j|jgg}| j|gdd}| jd ur)| j|d |d dd}||d< |S )N)r$   pt)imagesreturn_tensorswordsboxes)textr/   r-   target_size)r   torch	IntTensorheightwidthimage_processor	tokenizer)r   imager$   r1   inputsr"   r"   r#   
preprocessj   s   
z"ObjectDetectionPipeline.preprocessc                 C   sF   | d}| jdi |}|d|i|}| jd ur!|d |d< |S )Nr1   bboxr"   )popmodelr   r7   )r   model_inputsr1   outputsmodel_outputsr"   r"   r#   _forwards   s   

z ObjectDetectionPipeline._forward?c                    sL  |d }j d urY|d  \  fdd|d djddjdd\}}fdd	| D }fd
d	|d dD }g dfdd	t| ||D }|S j||}	|	d }
|
d }|
d }|
d }| |
d< fdd	|D |
d< fdd	|D |
d< g dfdd	t|
d |
d |
d D }|S )Nr1   r   c              
      sH    t| d  d  | d  d | d  d  | d  d gS )Nr   i  r   r      )_get_bounding_boxr2   Tensor)r;   )r4   r   r5   r"   r#   unnormalize   s   z8ObjectDetectionPipeline.postprocess.<locals>.unnormalizelogits)dimc                    s   g | ]	} j jj| qS r"   )r=   configid2label).0
predictionr   r"   r#   
<listcomp>   s    z7ObjectDetectionPipeline.postprocess.<locals>.<listcomp>c                    s   g | ]} |qS r"   r"   )rL   r;   )rF   r"   r#   rO      s    r;   )scorelabelboxc                    s&   g | ]}|d  krt t |qS )r   dictziprL   vals)keysr%   r"   r#   rO      s   & scoreslabelsr/   c                    s   g | ]} j jj|  qS r"   )r=   rJ   rK   item)rL   rQ   rN   r"   r#   rO      s    c                    s   g | ]}  |qS r"   )rD   )rL   rR   rN   r"   r#   rO      s    c                    s   g | ]	}t t |qS r"   rS   rV   )rX   r"   r#   rO      s    )r7   tolistsqueezesoftmaxmaxrU   r6   post_process_object_detection)r   r@   r%   r1   rY   classesrZ   r/   
annotationraw_annotationsraw_annotationr"   )r4   rX   r   r%   rF   r5   r#   postprocess{   s.   
" 
z#ObjectDetectionPipeline.postprocessrR   ztorch.Tensorc                 C   s8   | j dkr	td|  \}}}}||||d}|S )a%  
        Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... }

        Args:
            box (`torch.Tensor`): Tensor containing the coordinates in corners format.

        Returns:
            bbox (`Dict[str, int]`): Dict containing the coordinates in corners format.
        r+   z9The ObjectDetectionPipeline is only available in PyTorch.)xminyminxmaxymax)r   r   intr\   )r   rR   rf   rg   rh   ri   r;   r"   r"   r#   rD      s   

z)ObjectDetectionPipeline._get_bounding_box)N)rB   )__name__
__module____qualname____doc__r   r(   r   Predictionsr   
Predictionr*   r:   rA   re   r   strrj   rD   __classcell__r"   r"   r!   r#   r      s    	
"	
"-r   )typingr   r   r   r   utilsr   r   r	   r
   r   baser   r   image_utilsr   r2   models.auto.modeling_autor   r   
get_loggerrk   loggerrq   rp   ro   r   r"   r"   r"   r#   <module>   s    
